ZnO thin layers were deposited on p-type silicon substrates by the sol-gel spin-coating method and, then, annealed at various temperatures in the range of 573–873 K. Photoluminescence was carried out in the temperature range of 20–300 K. All samples showed two dominant peaks that have UV emissions from 300 nm to 400 nm and visible emissions from 400 nm to 800 nm. Influence of temperature on morphology and chemical composition of fabricated thin layers was examined by XRD, SEM, FTIR, and Raman spectroscopy. These measurements indicate that ZnO structure is obtained for samples annealed at temperatures above 573 K. It means that below this temperature, the obtained thin films are not pure zinc oxide. Thus, annealing temperature significantly affected crystallinity of the thin films.
In this article, synthesis, electronic and optical properties of an N-cyclohexyl-acrylamide (NCA) molecule are described based on different solvent environments and supported by theoretical calculations. Theoretical calculations have been carried out using a density function theory (DFT). Temperature dependence of the sample electrical resistance has been obtained by a four-point probe technique. Experimental and semi-theoretical parameters such as optical density, transmittance, optical band gap, refractive index of the NCA for different solvents were obtained. Both optical values and electrical resistance values have shown that NCA is a semiconductor material. The values of HOMO and LUMO energy levels of the headline molecule indicate that it can be used as the electron transfer material in OLEDs. All results obtained confirm that the NCA is a candidate molecule for OLED and optoelectronic applications.
The paper describes a research on assessing the quality of edges resulting from the interaction of laser pulses with a material of rigid and flexible printed circuits. A modern Nd:YVO4 crystal diode-pumped solid-state laser generating a 532 nm wavelength radiation with a nanosecond pulse time was used for the research. Influence of laser parameters such as beam power and pulse repetition frequency on a heat affected zone and carbonization was investigated. Quality and morphology of laser-cut substrates were analyzed by optical microscopy. High quality laser cutting of printed circuit board substrates was obtained without delamination and surface damage, with a minimal carbonization and heat affected zone. The developed process was implemented on the printed circuit assembly line.
The presented work proposes a new dimming control schemes for indoor visible light communication which combines variable pulse-position modulation, colour shift keying as key schemes of IEEE 802.15.7 standard, and sub carrier-pulse-position modulation as a pulse-position modulation variant with orthogonal frequency division multiplexing. These schemes are then compared with traditional merging schemes utilizing pulse-width modulation and multiple pulse-position modulation with m-ary quadrature amplitude modulation OFDM. The proposed schemes are investigated in a typical room with a different lighting layout (i.e., distinctive and uniform lighting layout), followed by an illumination investigation to evaluate the performance of the proposed schemes, especially the enhanced achieved data rates, and to determine their limitations as reliable visible light communication systems that can satisfy both communication and illumination requirements.
This paper presents a detailed review on a present confused situation related to defining and measurement of the eyepiece diopter range of optical/electro-optical devices to be used for a direct observation by human observers. On the basis of this review three precise definitions of a direct view imagers eyepiece diopter are presented. One of these definitions is determined as optimal fit to describe the perception of human observers. Further on, design and measurement uncertainties of diopter meters are discussed and rules of accurate measurements are formulated. Finally, recommendations for the maximum acceptable errors of the diopter scale of eyepieces of classic types of direct view imagers are presented, as well.
Thermo-optic properties enhancement of the bi-stable temperature threshold sensors based on a partially filled photonic crystal fiber was reported. Previously tested transducers filled with a selected group of pure n-alkanes had in most cases differences between switching ON and OFF states. Therefore, the modification of filling material by using additional crystallization centers in the form of gold nanoparticles was applied to minimize this undesirable effect. The evaluation of the thermodynamic properties of pentadecane and its mixtures with 14 nm spherical Au nanoparticles based on the differential scanning calorimetry measurements was presented. Optical properties analysis of sensors prepared with these mixtures has shown that they are bounded with refractive index changes of the filling material. Particular sensor switches ON before melting process begins and switches OFF before crystallization starts. Admixing next group of n-alkanes with these nanoparticles allows to design six sensors transducers which change ON and OFF states at the same temperature. Thus, the transducers with a wider temperature range for fiber-optic multi-threshold temperature sensor tests will be used.
Guide for Authors
https://www.editorialsystem.com/opelre/journal/for_authors/
OPTO-ELECTRONICS REVIEW is an open access journal. This involves the payment of an article publishing charge (APC) by the authors, their institution or funding body. We make the article freely available immediately upon publication on PAS Jornals platform (https://journals.pan.pl/opelre)
As of July 1st, 2024, there are changes in the fees for open access publications in Opto-Electronics Review: 2000 PLN (500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 200 PLN (50 EUR) per page (see the above link with instructions for Authors for details)
Articles submitted by June 30th, 2024: existing fee: 1750 PLN (or 400 EUR)
Articles submitted from July 1st, 2024: new fee: 2000 PLN (or 500 EUR) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 200 PLN or 50 EUR).
DOFINANSOWANO ZE ŚRODKÓW BUDŻETU PAŃSTWA
Rozwój czasopism naukowych
Nr projektu: RCN/SN/0652/2021/1
Dofinansowanie: 85 700 zł
Całkowita wartość: 85 700 zł
Data podpisania umowy: 6 grudnia 2022 r.
Celem projektu jest wsparcie działalności wydawniczej Opto-Electronics Review w zakresie poprawy widoczności czasopisma na arenie krajowej i międzynarodowej oraz podwyższenia jakości edytorskiej prezentowanych treści.
CO-FINANCED FROM THE STATE BUDGET
Development of scientific journals
Project number: RCN/SN/0652/2021/1
Funding: PLN 85,700
Total value: PLN 85,700
Date of signing the contract: December 6, 2022.
The project aims to support the publishing activities of Opto-Electronics Review to improve the journal's visibility in the national and international arena and increase the editorial quality of the presented content.
Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encouraged. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.
Articles are published in OPELRE in the following categories:
-invited reviews presenting the current state of the knowledge,
-specialized topics at the forefront of optoelectronics and photonics and their applications,
-refereed research contributions reporting on original scientific or technological achievements,
-conference papers printed in normal issues as invited or contributed papers.
Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.
Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.
Abstracting and Indexing:
Arianta
BazTech
EBSCO relevant databases
EBSCO Discovery Service
SCOPUS relevant databases
ProQuest relevant databases
Clarivate Analytics relevant databases
WangFang
additionally:
ProQuesta (Ex Libris, Ulrich, Summon)
Google Scholar
Policies and ethics:
The editors of the journal place particular emphasis on compliance with the following principles:
Ethical policy of Opto-Electronics Review
The ethical policy of Opto-Electronics Review follows the European Code of Conduct for Research Integrity and is also guided by the core practices and policies outlined by the Committee on Publication Ethics (COPE).
Authors must be honest in presenting their results and conclusions of their research. Research misconduct is harmful for knowledge.
Research results
Fabrication, falsification, or selective reporting of data with the intent to mislead or deceive is unethical, as is the theft of data or research results from others. The results of research should be recorded and maintained to allow for analysis and review. Following publication, the data should be retained for a reasonable period and made available upon request. Exceptions may be appropriate in certain circumstances to preserve privacy, to assure patent protection, or for similar reasons.
Authorship
All those who have made a significant contribution should be given chance to be cited as authors. Other individuals who have contributed to the work should be acknowledged. Articles should include a full list of the current institutional affiliations of all authors, both academic and corporate.
Competing interests
All authors, referees and editors must declare any conflicting or competing interests relating to a given article. Competing interests through their potential influence on behavior or content or perception may undermine the objectivity, integrity, or perceived value of publication.
Peer Review
We are committed to prompt evaluation and publication of fully accepted papers in Opto-Electronics Review’s publications. To maintain a high-quality publication, all submissions undergo a rigorous review process.
Characteristics of the peer review process are as follows:
• Simultaneous submissions of the same manuscript to different journals will not be tolerated.
• Manuscripts with contents outside the scope will not be considered for review.
• Opto-Electronics Review is a single-blind review journal.
• Papers will be refereed by at least 2 experts as suggested by the editorial board.
• In addition, Editors will have the option of seeking additional reviews when needed. Authors will be informed when Editors decide further review is required.
• All publication decisions are made by the journal’s Editor-in-Chief based on the referees’ reports. Authors of papers that are not accepted are notified promptly.
• All submitted manuscripts are treated as confidential documents. We expect reviewers to treat manuscripts as confidential material.
• Editors and reviewers involved in the review process should disclose conflicts of interest resulting from direct competitive, collaborative, or other relationships with any of the authors, and remove oneself from cases in which such conflicts preclude an objective evaluation. Privileged information or ideas that are obtained through peer review must not be used for competitive gain.
• A reviewer should be alert to potential ethical issues in the paper and should bring these to the attention of the editor, including any substantial similarity or overlap between the manuscript under consideration and any other published paper of which the reviewer has personal knowledge. Any statement, observation, derivation, or argument that had been previously reported should be accompanied by the relevant citation.
• Personal criticism is inappropriate.
Plagiarism
Reproducing text from other papers without properly crediting the source (plagiarism) or producing many papers with almost the same content by the same authors (self-plagiarism) is not acceptable. Submitting the same results to more than one journal concurrently is unethical. Exceptions are the review articles. Authors may not present results obtained by others as if they were their own. Authors should acknowledge the work of others used in their research and cite publications that have influenced the direction and course of their study.
Plagiarism is not tolerated. All manuscripts submitted to Opto-Electronics Review will be checked for plagiarism (copying text or results from other sources) and self-plagiarism (duplicating substantial parts of authors’ own published work without giving the appropriate references) using the CrossCheck database (iThenticate plagiarism checker).
Duplicate submission
Simultaneous submissions of the same manuscript to different journals will not be tolerated. The submitted article will be removed without consideration.
Corrections and retractions
All authors have an obligation to inform and cooperate with journal editors to provide prompt retractions or correction of errors in published works.
• The journal will issue retractions if:
• There is clear evidence that the findings are unreliable, either as a result of misconduct (e.g., data fabrication or honest error - miscalculation or experimental error);
• The findings have previously been published elsewhere without proper cross-referencing, permission or justification (i.e., cases of redundant publication);
• It constitutes plagiarism;
• It reports unethical research.
• The journal will issue errata, if:
• A small portion of an otherwise reliable publication proves to be misleading (especially because of honest error);
• The author list is incorrect.
Other forms of misconduct include failure to meet clear ethical and legal requirements such as misrepresentation of interests, breach of confidentiality, lack of informed consent and abuse of research subjects or materials. Misconduct also includes improper dealing with infringements, such as attempts to cover up misconduct and reprisals on whistleblowers.
The primary responsibility for handling research misconduct is in the hands of those who employ the researchers. If a possible misconduct is brought to our attention, we will seek advice from the referees and the Editorial Board. If there is the evidence, we will resolve the matter by appropriate corrections in the printed and online journal; by refusing to consider an author's future work and by contacting affected authors and editors of other journals.
Human and Animal Rights
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.
All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the EU Directive 2010/63/EU for animal experiments, and the authors should clearly indicate in the manuscript that such guidelines have been followed.