Applied sciences

Opto-Electronics Review

Content

Opto-Electronics Review | 2023 | 31 | 3

Authors and Affiliations

Rana M. Nassar
1
Ashraf A. M. Khalaf
1
ORCID: ORCID
Ghada M. El-Banby
2
Fathi E. Abd El-Samie
3 4
Aziza I. Hussein
5
ORCID: ORCID
Walid El-Shafai
3 6

  1. Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61111, Egypt
  2.   Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
  3. Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
  4. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdurrahman University, Riyadh 84428, Saudi Arabia
  5. Electrical and Computer Engineering Department, Effat University, Jeddah, Kingdom of Saudi Arabia
  6.  Security Engineering Laboratory, Department of Computer Science, Prince Sultan University, Riyadh 11586, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

Thin films were prepared based on cellulose polymer doped with different ratios of natural dye derived from Portulaca grandiflora concentrations. The polymer and natural dye were extracted from eco-friendly materials—the cell walls of millet husks and Portulaca grandiflora, respectively. The spray pyrolysis technique was applied to prepare thin film samples to control the film morphology and reduce the roughness of the surface. Optical microscope and Fourier transform infrared were used to analyse structural, morphological, and functional groups for all samples, respectively. The peak absorbance, extinction coefficient, optical bandgap, Urbach energy, and optical conductivity for the thin films were determined using ultraviolet-visible spectroscopy. The results show an enhancement in the optical characteristics when the natural cellulose is doped with a dye. Doping cellulose with 5% P. grandiflora has led to a considerable reduction in the energy bandgap (to 1.95 eV), compared to the sample doped with 1%.
Go to article

Authors and Affiliations

Tahseen Alaridhee
1
ORCID: ORCID
Mohammed T. Obeed
1
ORCID: ORCID
Fatima H. Malk
1
ORCID: ORCID
Baheya A. Dhahi
1

  1. Department of Material Science, Polymer Research Centre, University of Basrah, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The article presents an overview and a classification of X-ray detection methods. The main motivation for its preparation was the need to select a suitable and useful method for detecting signals from a currently developed miniature micro-electro-mechanical system (MEMS) X-ray source. The described methods were divided into passive and active ones, among which can be distinguished: chemical, luminescent, thermo-luminescent, gas ionization, semiconductor, and calorimetric methods. The advantages and drawbacks of each method were underlined, as well as their usefulness for the characterisation of the miniature MEMS X-ray source.
Go to article

Authors and Affiliations

Paweł Urbański 
1
ORCID: ORCID
Tomasz Grzebyk
1
ORCID: ORCID

  1. Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the designing and simulation of 400 Gbps polarisation division multiplexing-quadrature amplitude modulation-orthogonal frequency division multiplexing (PDM-4QAM-OFDM)-based inter-satellite optical wireless communication (IsOWC)/mechatronic telecommunication system for improving the link information carrying capacity was carried out. With quadrature amplitude modulation (QAM) encoding, the performance of the executed system has been addressed using metrics such as signal to noise ratio (SNR) and total received power (RP). The performance with suggested system has been examined in relation to the effects of various factors such as operating wavelength, transmission power, and receiving pointing error angle. Moreover, a better identification method for improving connection reach between mechatronic devices/satellites has been revealed in this study. A performance comparison of the proposed system with other implemented approaches has been made in the final step
Go to article

Authors and Affiliations

Shivmanmeet Singh
1 2
Narwant Singh Grewal
2
Baljeet Kaur
2

  1. I. K. Gujral Punjab Technical University, Jalandhar – Kapurthala Highway, Kapurthala, 144603, Punjab, India
  2. Department of Electronics and Communication Engineering, Guru Nanak Dev Engineering College, Ludhiana, 141006, Punjab, India
Download PDF Download RIS Download Bibtex

Abstract

Local weather conditions have an impact on the availability of free-space optical (FSO) communication. The variation in meteorological parameters, such as temperature, humidity, and wind speed, leads to variations of the refractive index along the transmission path. These refractive index inhomogeneities produced by atmospheric turbulence induce optical turbulence which is responsible for random fluctuations in the intensity of the laser beam that carries the signal (irradiance) called scintillations that can significantly degrade the performance of FSO systems. This paper aims to investigate the feasibility of deploying FSO communication technology under scintillation effects in any urban region and atmospheric environment. To achieve that, firstly by utilizing the Hufnagel-Vally day with the Sadot and Kopeika models together, the scintillation strength for a specified region, Sulaimani City in north-eastern Iraq as an example, has been estimated through the calculation of the refractive index structure parameter (Cn2) over a period of 10 years and it was found to be at the strong turbulence level. Secondly, from the same estimated parameter, the scintillation attenuation of the signal carrying the laser beam intensity can be calculated to investigate the feasibility of FSO communication using Optysistem-7 software. The optimal link distance for north-eastern Iraq (Sulaimani City) has been found to be within the limit of about 5.5 km. Analysing the max. Q-factor, bit-error rate and signal to noise ratio for an average of 120 months between 2013–2022 assessed the best and worst seasons for FSO.
Go to article

Authors and Affiliations

Aras S. Mahmood
1

  1. Physics Department, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region / Iraq
Download PDF Download RIS Download Bibtex

Abstract

Most automotive electronic components can cause electromagnetic interference, that can cause power electronic circuits to become unstable. As per electromagnetic compatibility (EMC) standards, these electronic circuits should meet the specifications which are not achieved under some conditions. In this paper, the conducted emissions (CEs) are generated due to the switching of a buck converter, which often occurs in automotive electronics. The noise source was found to be due to the presence of common mode currents which largely affects the performance of EMC. Two types of filtering techniques were analysed and designed, and the results were compared to find an effective filtering solution to mitigate the effects of CE due to a common mode noise for the frequency range from 150 kHz to 108 MHz according to the International Special Committee on Radio Interference (CISPR25) standard. The capacitive and parasitic impedance were calculated and then used in the simulation. Finally, the simulated and measured results are presented. The noise level can be minimized by as much as 50 dB, which is an efficient noise reduction value.
Go to article

Authors and Affiliations

G. V. Aswini
1
ORCID: ORCID
S. Chenthurpandian
1

  1. Department of Electronics and Communication Engineering, SNS College of Technology, Coimbatore-641035, India

Instructions for authors

Guide for Authors

https://www.editorialsystem.com/opelre/journal/for_authors/

OPTO-ELECTRONICS REVIEW is an open access journal. This involves the payment of an article publishing charge (APC) by the authors, their institution or funding body. We make the article freely available immediately upon publication on PAS Jornals platform (https://journals.pan.pl/opelre)

As of July 1st, 2024, there are changes in the fees for open access publications in Opto-Electronics Review: 2000 PLN (500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 200 PLN (50 EUR) per page (see the above link with instructions for Authors for details)

Articles submitted by June 30th, 2024: existing fee: 1750 PLN (or 400 EUR)

Articles submitted from July 1st, 2024: new fee: 2000 PLN (or 500 EUR) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 200 PLN or 50 EUR).

Additional info

barwy Rzeczypospolitej Polskiej i wizerunek godła Rzeczypospolitej Polskiej

DOFINANSOWANO ZE ŚRODKÓW BUDŻETU PAŃSTWA
Rozwój czasopism naukowych
Nr projektu: RCN/SN/0652/2021/1
Dofinansowanie: 85 700 zł
Całkowita wartość: 85 700 zł
Data podpisania umowy: 6 grudnia 2022 r.
Celem projektu jest wsparcie działalności wydawniczej Opto-Electronics Review w zakresie poprawy widoczności czasopisma na arenie krajowej i międzynarodowej oraz podwyższenia jakości edytorskiej prezentowanych treści.

CO-FINANCED FROM THE STATE BUDGET
Development of scientific journals
Project number: RCN/SN/0652/2021/1
Funding: PLN 85,700
Total value: PLN 85,700
Date of signing the contract: December 6, 2022.
The project aims to support the publishing activities of Opto-Electronics Review to improve the journal's visibility in the national and international arena and increase the editorial quality of the presented content.

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encouraged. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Arianta

BazTech

EBSCO relevant databases

EBSCO Discovery Service

SCOPUS relevant databases

ProQuest relevant databases

Clarivate Analytics relevant databases

WangFang

additionally:

ProQuesta (Ex Libris, Ulrich, Summon)

Google Scholar

Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Ethical policy of Opto-Electronics Review

The ethical policy of Opto-Electronics Review follows the European Code of Conduct for Research Integrity and is also guided by the core practices and policies outlined by the Committee on Publication Ethics (COPE).

Authors must be honest in presenting their results and conclusions of their research. Research misconduct is harmful for knowledge.

Research results

Fabrication, falsification, or selective reporting of data with the intent to mislead or deceive is unethical, as is the theft of data or research results from others. The results of research should be recorded and maintained to allow for analysis and review. Following publication, the data should be retained for a reasonable period and made available upon request. Exceptions may be appropriate in certain circumstances to preserve privacy, to assure patent protection, or for similar reasons.

Authorship

All those who have made a significant contribution should be given chance to be cited as authors. Other individuals who have contributed to the work should be acknowledged. Articles should include a full list of the current institutional affiliations of all authors, both academic and corporate.

Competing interests

All authors, referees and editors must declare any conflicting or competing interests relating to a given article. Competing interests through their potential influence on behavior or content or perception may undermine the objectivity, integrity, or perceived value of publication.

Peer Review

We are committed to prompt evaluation and publication of fully accepted papers in Opto-Electronics Review’s publications. To maintain a high-quality publication, all submissions undergo a rigorous review process.

Characteristics of the peer review process are as follows:

• Simultaneous submissions of the same manuscript to different journals will not be tolerated.

• Manuscripts with contents outside the scope will not be considered for review.

• Opto-Electronics Review is a single-blind review journal.

• Papers will be refereed by at least 2 experts as suggested by the editorial board.

• In addition, Editors will have the option of seeking additional reviews when needed. Authors will be informed when Editors decide further review is required.

• All publication decisions are made by the journal’s Editor-in-Chief based on the referees’ reports. Authors of papers that are not accepted are notified promptly.

• All submitted manuscripts are treated as confidential documents. We expect reviewers to treat manuscripts as confidential material.

• Editors and reviewers involved in the review process should disclose conflicts of interest resulting from direct competitive, collaborative, or other relationships with any of the authors, and remove oneself from cases in which such conflicts preclude an objective evaluation. Privileged information or ideas that are obtained through peer review must not be used for competitive gain.

• A reviewer should be alert to potential ethical issues in the paper and should bring these to the attention of the editor, including any substantial similarity or overlap between the manuscript under consideration and any other published paper of which the reviewer has personal knowledge. Any statement, observation, derivation, or argument that had been previously reported should be accompanied by the relevant citation.

• Personal criticism is inappropriate.

Plagiarism

Reproducing text from other papers without properly crediting the source (plagiarism) or producing many papers with almost the same content by the same authors (self-plagiarism) is not acceptable. Submitting the same results to more than one journal concurrently is unethical. Exceptions are the review articles. Authors may not present results obtained by others as if they were their own. Authors should acknowledge the work of others used in their research and cite publications that have influenced the direction and course of their study.

Plagiarism is not tolerated. All manuscripts submitted to Opto-Electronics Review will be checked for plagiarism (copying text or results from other sources) and self-plagiarism (duplicating substantial parts of authors’ own published work without giving the appropriate references) using the CrossCheck database (iThenticate plagiarism checker).

Duplicate submission

Simultaneous submissions of the same manuscript to different journals will not be tolerated. The submitted article will be removed without consideration.

Corrections and retractions

All authors have an obligation to inform and cooperate with journal editors to provide prompt retractions or correction of errors in published works.

• The journal will issue retractions if:

• There is clear evidence that the findings are unreliable, either as a result of misconduct (e.g., data fabrication or honest error - miscalculation or experimental error);

• The findings have previously been published elsewhere without proper cross-referencing, permission or justification (i.e., cases of redundant publication);

• It constitutes plagiarism;

• It reports unethical research.

• The journal will issue errata, if:

• A small portion of an otherwise reliable publication proves to be misleading (especially because of honest error);

• The author list is incorrect.

Other forms of misconduct include failure to meet clear ethical and legal requirements such as misrepresentation of interests, breach of confidentiality, lack of informed consent and abuse of research subjects or materials. Misconduct also includes improper dealing with infringements, such as attempts to cover up misconduct and reprisals on whistleblowers.

The primary responsibility for handling research misconduct is in the hands of those who employ the researchers. If a possible misconduct is brought to our attention, we will seek advice from the referees and the Editorial Board. If there is the evidence, we will resolve the matter by appropriate corrections in the printed and online journal; by refusing to consider an author's future work and by contacting affected authors and editors of other journals.

Human and Animal Rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the EU Directive 2010/63/EU for animal experiments, and the authors should clearly indicate in the manuscript that such guidelines have been followed.

This page uses 'cookies'. Learn more