Awadin W, Zahran E, Zaki VH (2012) Impact of some prevalent parasitic diseases on pathological alterations in African catfish (Clarias garpienus) in dakahlyia governorate. Proceedings of the 5th Global Fisheries and Aquaculture Research Conference, Faculty of Agriculture, Cairo University, Giza, Egypt, pp 16-32.
Africa CM, de Leon W, Garcia EY (1940) Visceral complications in intestinal heterophyidiasis of man. Acta Med Philippina, Monographic Series 1: 1-132.
Belizario VYJr, de Leon WU, Bersabe MMJ, Baird JK, Bangs MJ (2004) A focus of human infection by Haplorchis taichui (Trematoda: Heterophyidae) in the southern Philippines. J Parasitol 90: 1165-1169.
Blazer VS, Gratzek JB (1985) Cartilage proliferation in response to metacercarial infections of fish Bray RA, Gibson D, Jones A (2008) Keys to the Trematoda, vol 3. London: CAB, International and natural history museum, pp 824.
Caron Y, Rondelaud D, Losson B (2008) The detection and quantification of a digenean infection in the snail host with special emphasis on Fasciola sp. Parasitol Res 103: 735-744.
Chai JY (2007) Fish and Plant-borne Parasites. World Class Parasites, Vol. 11. Intestinal flukes, In: Murrell KD, Fried B eds. Food-borne Parasitic Zoonoses: Springer, New York, USA, pp 53-115.
Chai JY, Jung BK (2017) Fishborne zoonotic heterophyid infections: An update. Food Waterborne Parasitol 8-9 : 33-63.
Chai JY, Murrell KD, Lambery AJ (2005) Fish-borne parasitic zoonoses: status and issues. Int J Parasitol 35: 1233-1254.
Ditrich O, Giboda M, Scholz T, Beer SA (1992) Comparative morphology of eggs of the Haplorchiinae (Trematoda: Heterophyidae) and some other medically important heterophyid and opisthorchiid flukes. Folia Parasitol 39: 123-132.
Dung DT, De NV, Waikagul J, Dalsgaard A, Chai J-Y, Sohn W-M, Murrell KD (2007) Fishborne zoonotic intestinal trematodes. Vietnam. Emerg Infect Dis 13: 1828-1833.
Farahnak A, Massoud J (1999) Medically important metacercariae (larva trematodes) in Khuzestan Fishes, Iran. Acta Med Iran 37: 59-62.
Farahnak A, Vafaie-Darian R, Mobedi I (2006) A faunistic survey of cercariae from fresh water snails: Melanopsis spp. and their role in disease transmission. Iran J Public Health 35: 70-74.
Gjurcevic E, Petrinec Z, Kozaric Z, Kuzir S, Gjurcevic Kantura V, Vucemilo M, Dzaja P (2007) Metacercariae of Centrocestus formosanus in goldfish (Carassius auratus L.) imported into Croatia. Helminthologia 44: 214-216.
Golchin Manshadi AR, Mirghafari S (2015) Composition and distribution of macrobenthic invertebrates of Shapour River, Fars south-west, Iran. Int J Biol Pharm Allied Sci 4: 5004-5012.
Golchin Manshadi AR (2021) Morphological and molecular identification of zoonotic trematode metacercariae (Haplorchis taichui) in freshwater fish in Iran. Vet Zootec 28: 1-9.
Hoffman GL (1999) Parasites of north American freshwater fishes. 2rd ed. Cornel University Press, USA, p 539.
Kumchoo K, Chai JY (2023) Trematode metacercariae and adults in cyprinoid fish from Khun Thale Swamp in Surat Thani province, Thailand. Parasites Hosts Dis61: 163-171.
Kumchoo K, Wongsawad C, Chai JY, Vanittanakom P, Rojanapaibul A (2005) High prevalence of Haplorchis taichui metacercariae in cyprinoid fish from Chiang Mai Province, Thailand. Southeast Asian J Trop Med Public Health 36: 451-455.
Kuris AM (1997) Host behavior modification: An evolutionary perspective, In N.E. Beckage [ed.], Parasites and pathogens: Effects on host hormones and behavior. Chapman and Hall, London, pp 293-295.
Leatherland JF (2006) Fish diseases and disorders. vol 1, Woo, P.T.K (eds). CABI, New York, p 800.
Mitchell AJ, Salmon MJ, Huffman DG, Goodwin AE, Brandt TM (2000) Prevalence and pathogenicity of a heterophyid trematode infecting the gills of an endangered fish, the fountain darter, in two central Texas spring-fed rivers. J Aquat Anim Health 12: 283-289.
Mood SM, Ebrahimzadeh Mousavi HA, Mokhayer B, Ahmadi M, Soltani M, Sharifpour I (2010) Centrocestus formosanus metacercarial infection of four ornamental fish species imported into Iran. Bull Eur Ass Fish Pathol 30: 146-149.
Nithikathkul C, Wongsawad C (2008) Prevalence of Haplorchis taichui and Haplorchoides sp. metacercariae in freshwater fish from water reservoirs, Chiang Mai, Thailand. Korean J Parasitol 46: 109-112.
Olson RE, Pierce JR (1997) A Trematode Metacercaria Causing Gill Cartilage Proliferation in Steelhead Trout from Oregon. J Wild life Dis 33: 886-890.
Overstreet RM, Curran SS (2004) Defeating diplostomoid dangers in USA catfish aquaculture. Folia Parasitol 51: 153-165.
Pointier JP, Delay B, Toffart JL, Lefevre M, Romero-Alvarez R (1992) Life history traits of three morphs of Melanoides tuberculata (Gastropoda: Thiaridae), an invading snail in the French West Indies. J Mollus Stud 58: 415-423.
Roberts RJ (2001) Fish pathology,3rd ed. Saunders publishing, London, UK: WB, 472P.
Santiago Bass C, Khan S, Weis JS (2007) Morphological changes to the gills of killifishassociated with severe parasite infection. J Fish Biol 71: 920-925.
Srisawangwong T, Sithithaworn P, Tesana S (1997) Metacercariae isolated from cyprinoid fishes in Khon Kaen district by digestion technic. Southeast Asian J Trop Med Public Health 28 (Suppl 1): 224-226.
Sukontason K, Piangjai S, Muangyimpong Y, Sukontason K, Methanitikorn R, Chaithong U (1999) Prevalence of trematode metacercariae in cyprinoid fish of Ban Pao district, Chiang Mai Province, northern Thailand. Southeast Asian J Trop Med Public Health 30: 365-370.
Teimoori S, Mowlavi G, Arimatsu Y, Sripa B, Mobedi I, Sharifdini M, Massoud J, Naddaf SR (2019) Infection of the jackal (Canis aureus) by Haplorchis taichui (Trematoda: Heterophyidae) in Southwestern Iran: A clue for potential human infection. Iran J Parasitol 14: 120-126.
Velasquez CC (1982) Heterophyidiasis, In Steele JH Ed, CRC Handbook Series in Zoonoses, Section C: Parasitic Zoonoses, Vol. III (Trematode Zoonoses). CRC Press, Boca Raton, USA, pp 99-107.
Velez-Hernandez EM, Constantino-Casas F, Garcia-Marquez LJ, Osorio-Sarabia D (1998) Short communication Gill lesions in common carp, Cyprinus carpio L., in Mexico due to the metacercariae of Centrocestus formosanus. J Fish Dis 21: 229-232.
Walaa E, Marwa F, Zeinab AA (2019) Responses of the rodlet cells to metacercarial infections in oreochromis niloticus. Assiut Vet Med J 65: 59-71.
Wongsawad C, Wongsawad P, Chai J, Anuntalabhochai S (2009) Haplorchis taichui Witenberg, 1930: Development of a HAT-RAPD marker for the detection of minute intestinal fluke infection. Exp Parasitol 123: 158-161.
Wongsawad P, Wongsawad C (2011) Infection Dynamics and Molecular Identification of Metacercariae in Cyprinoids from Chiang Mai and Sakon Nakhon Provinces. Southeast Asian J Trop Med Public Health 42: 53-57.
Yildiz H (2005) Infection with metacercariae of Centrocestus formosanus (Trematoda: Heterophyidae) in ornamental fish imported into Turkey. Bull Eur Ass Fish Pathol 25: 244-246.
Yu SH, Mott KE (1994) Epidemiology and morbidity of food-borne intestinal trematode infections. Trop Dis Bull 91: 125-152.
Asvold BO, Bjoro T, Nilsen TI, Vatten LJ (2007) Association between blood pressure and serum thyroid-stimulating hormone concentration within the reference range: a population-based study. J Clin Endocrinol Metab 92: 841-845.
Biondi B, Cooper DS (2008) The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 29: 76-131.
DiGeronimo PM, Brandão J (2020) Updates on thyroid disease in rabbits and guinea pigs. Vet Clin North Am Exot Anim Pract 23: 373-381.
Gerdes AM, Iervasi G (2010) Thyroid replacement therapy and heart failure. Circulation 122: 385-393.
Gołyński M (2012) Structure and functions of the thyroid gland – details important for a practicing physician. In: Gołyński M (ed) Thyroid diseases in dogs. Elamed, Katowice.
Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26: 704-728.
Klein I, Danzi S (2007) Thyroid disease and the heart. Circulation 116: 1725-1735.
Rodondi N, Newman AB, Vittinghoff E, de Rekeneire N, Satterfield S, Harris TB, Bauer DC (2005) Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch Intern Med 165: 2460-2466.
Stephan I, Nolte I, Hoppen HO (2003) The effect of hypothyroidism on cardiac function in dogs. Dtsch Tierarztl Wochenschr 110: 231-239.
Kopański R (1984) Rational rabbit breeding. PWRiL, Warszawa, p 207.
Pasławska U, Pasławski R, Nowak K, Płóciennik M (2020) The effect of hypothyroidism on the circulatory system in dogs. Wet w prakt 17: 37-42.
Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, L’abbate A, Mariotti R, Iervasi G (2008) Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab 93: 1351-1358.
Tilley LP, Smith FWK, Oyama M, Sleeper MM (2010) Cardiology of dogs and cats. ed., Edra Urban & Partner, p 269.
Ziętek J, Wilczyńska A, Jabłoński M, Sajdak S, Romanowska A, Teodorowski O, Mazurek Ł, Staniec M, Winiarczyk S, Adaszek Ł (2021) Clinical problems in small mammals: Eleven-year retrospective study. Med Weter 77: 95-98.
Allen LV Jr (2019) Mupirocin 1% in normal saline nasal suspension. US Pharmacist 44: 47-48.
Andrade M, Oliveira K, Morais C, Abrantes P, Pomba C, Rosato AE, Couto I, Costa SS (2022) Virulence potential of biofilm-producing Staphylococcus pseudintermedius, Staphylococcus aureus and Staphylococcus coagulans causing skin infections in companion animals. Antibiotics 11: 1339-1354.
Azzariti S, Bond R, Loeffler A, Zendri F, Timofte D, Chang YM, Pelligand L (2022) Investigation of In vitro susceptibility and resistance mechanisms in skin pathogens: perspectives for fluoroquinolone therapy in canine pyoderma. Antibiotics 11: 1204-1217.
Bajwa J (2016) Canine superficial pyoderma and therapeutic considerations. Can Vet J 57: 204-206.
Bakkiyaraj D, Sritharadol R, Padmavathi AR, Nakpheng T, Srichana T (2017) Anti-biofilm properties of a mupirocin spray formulation against Escherichia coli wound infections. Biofouling 33: 591-600.
Bannoehr J, Guardabassi L (2012) Staphylococcus pseudintermedius in the dog: taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet Dermatol 23: 253-266.
Baumer W, Bizikova P, Jacob M, Linder KE (2017) Establishing a canine superficial pyoderma model. J App Microbiol 122: 331-337.
Gangwar A, Kumar P, Singh R, Kush P (2021) Recent advances in mupirocin delivery strategies for the treatment of bacterial skin and soft tissue infection. Future Pharmacol 1: 80-103.
Ha KR, Psaltis AJ, Butcher AR, Wormald PJ, Tan LW (2008) In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Laryngoscope 118: 535-540.
Hillier A, Lloyd DH, Weese JS, Blondeau JM, Boothe D, Breitschwerdt E, Guardabassi L, Papich M, Rankin S, Turnidge JD, Sykes JE (2014) Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial guidelines working group of the international society for companion animal infectious diseases). Vet Dermatol 25: 163-175.
Ishikawa J, Horii T (2005) Effects of mupirocin at subinhibitory concentrations on biofilm formation in Pseudomonas aeruginosa. Chemotherapy 51: 361-362.
Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81: 7-11.
Khoshnood S, Heidary M, Asadi A, Soleimani S, Motahar M, Savari M, Saki M, Abdi M (2019) A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. Biomed Pharmacother 109: 1809-1818.
Kizerwetter-Świda MK, Chrobak-Chmiel D, Rzewuska M (2019) High-level mupirocin resistance in methicillin-resistant Staphylococci isolated from dogs and cats. BMC Vet Res 15: 1-5
Lynch SA, Helbig KJ (2021) The complex diseases of Staphylococcus pseudintermedius in canines: where to next? Vet Sci 8: 11-29.
Meroni G, Filipe JF, Drago L, Martino PA (2019) Investigation on antibiotic-resistance, biofilm formation and virulence factors in multi drug resistant and non multi drug resistant Staphylococcus pseudintermedius. Microorganisms 7: 702-713.
Rosman CW, Mei van der HC, Sjollema J (2021) Influence of sub-inhibitory concentrations of antimicrobials on micrococcal nuclease and biofilm formation in Staphylococcus aureus. Sci Rep 11: 1-11.
Ruscher C, Lübke-Becker AL, Wleklinski CG, Soba A, Wieler LH, Walther B (2009) Prevalence of methicillin-resistant Staphylococcus pseudintermedius isolated from clinical samples of companion animals and equidaes. Vet Microbiol 136: 197-201.
Sanju AJ, Kopula SS, Palraj KK (2015) Screening for mupirocin resistance in Staphylococcus. J Clin Diagn Res 9: 9-10.
Silva V, Oliveria A, Manageiro V, Canica M, Contente D, Capita R, Alonso-Calleja C, Carvalho I, Capelo JL, Igrejas G, Poeta P (2021) Clonal diversity and antimicrobial resistance of methicillin-resistant Staphylococcus pseudintermedius isolated from canine pyoderma. Microorganisms 9: 482-491.
Singh A, Walker M, Rousseau J, Weese JS (2013) Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Vet Res 9: 1-6.
Sritharadol R, Hamada M, Kimura S, Ishii Y, Srichana T, Tateda K (2018) Mupirocin at subinhibitory concentrations induces biofilm formation in Staphylococcus aureus. Microb Drug Resist 24: 1249-1258.
Sritharadol R, Nakpheng T, Heng PW, Srichana T (2017) Development of a topical mupirocin spray for antibacterial and wound-healing applications. Drug Dev Ind Pharm 43: 1715-1728.
Stefanetti V, Bietta A, Pascucci L, Marenzoni ML, Coletti M, Franciosini MP, Passamonti F, Proietti PC (2017) Investigation of the antibiotic resistance and biofilm formation of Staphylococcus pseudintermedius strains isolated from canine pyoderma. Vet Ital 53: 289-296.
Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292: 107-113.
Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358: 135-138.
Summers JF, Brodbelt DC, Forsythe PJ, Loeffler A, Hendricks A (2012) The effectiveness of systemic antimicrobial treatment in canine superficial and deep pyoderma: a systematic review. Vet Dermatol 23: 305-329.
Uren B, Psaltis A, Wormald PJ (2009) Nasal lavage with mupirocin for the treatment of surgically recalcitrant chronic rhinosinusitis. Laryngoscope 118: 1677-1680.
Valentine B (2019) Treating pyoderma without the use of systemic antibiotics. Can Vet J 60: 1361-1363.
Valentine BK, Dew W, Yu A, Weese JS (2012) In vitro evaluation of topical biocide and antimicrobial susceptibility of Staphylococcus pseudintermedius from dogs. Vet Dermatol 23: 493-e95.
Zhou S, Cui Z, Urban J (2011) Dead cell counts during serum cultivation are underestimated by the fluorescent live/dead assay. Biotechnol J 6: 513-518.
Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2018) Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev 42: 68-80.
Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33: D325-328.
CLSI (2018) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI Standard 7: 11.
Cutuli MA, Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R (2019) Galleria mellonella as a consolidated in vivo model hosts: new developments in antibacterial strategies and novel drug testing. Virulence 10: 527-541.
Dmitriev A, Shakleina E, Tkáciková L, Mikula I, Totolian A (2002) Genetic heterogeneity of the pathogenic potentials of human and bovine group B streptococci. Folia Microbiol (Praha) 47: 291-295.
Gaddy JA, Arivett BA, McConnell MJ, López-Rojas R, Pachón J, Actis LA (2012) Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun 80: 1015-1024.
Gelalcha BD, Ensermu DB, Agga GE, Vancuren M, Gillespie BE, D’Souza DH, Okafor CC, Kerro Dego O (2022) Prevalence of Antimicrobial Resistant and Extended-Spectrum Beta-Lactamase-producing Escherichia coli in Dairy Cattle Farms in East Tennessee. Foodborne Pathog Dis 19: 408-416.
Guevara MA, Francis JD, Lu J, Manning SD, Doster RS, Moore RE, Gaddy JA (2022) Streptococcus agalactiae cadD Is Critical for Pathogenesis in the Invertebrate Galleria mellonella Model. ACS Infect Dis 8: 2405-2412.
Han R, Niu M, Liu S, Mao J, Yu Y, Du Y (2022) The effect of siderophore virulence genes entB and ybtS on the virulence of Carbapenem-resistant Klebsiella pneumoniae. Microb Pathog 171: 105746.
Jiang LJ, Xiao X, Yan KX, Deng T, Wang ZQ (2022) Ex Vivo Pharmacokinetics and Pharmacodynamics Modeling and Optimal Regimens Evaluation of Cefquinome Against Bovine Mastitis Caused by Staphylococcus aureus. Front Vet Sci 9: 837882.
Kannika K, Pisuttharachai D, Srisapoome P, Wongtavatchai J, Kondo H, Hirono I, Unajak S, Areechon N (2017) Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR. J Appl Microbiol 122: 1497-1507.
Kayansamruaj P, Pirarat N, Katagiri T, Hirono I, Rodkhum C (2014) Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand. J Vet Diagn Invest 26: 488-495.
Leitão JH (2020) Microbial Virulence Factors. Int J Mol Sci 21: 5320
Megaw J, Thompson TP, Lafferty RA, Gilmore BF (2015) Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. Chemosphere 139: 197-201.
Mikulak E, Gliniewicz A, Przygodzka M, Solecka J (2018) Galleria mellonella L. as model organism used in biomedical and other studies. Przegl Epidemiol 72: 57-73.
Paria P, Behera BK, Mohapatra PKD, Parida PK (2021) Virulence factor genes and comparative pathogenicity study of tdh, trh and tlh positive Vibrio parahaemolyticus strains isolated from Whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) in India. Infect Genet Evol 95: 105083.
Rodríguez-Andrade E, Hernández-Ramírez KC, Díaz-Peréz SP, Díaz-Magaña A, Chávez-Moctezuma MP, Meza-Carmen V, Ortíz-Alvarado R, Cervantes C, Ramírez-Díaz MI (2016) Genes from pUM505 plasmid contribute to Pseudomonas aeruginosa virulence. Antonie Van Leeuwenhoek 109: 389-396.
San Francisco J, Astudillo C, Vega JL, Catalán A, Gutiérrez B, Araya JE, Zailberger A, Marina A, García C, Sanchez N, Osuna A, Vilchez S, Ramírez MI, Macedo J, Feijoli VS, Palmisano G, González J (2022) Trypanosoma cruzi pathogenicity involves virulence factor expression and upregulation of bioenergetic and biosynthetic pathways. Virulence 13: 1827-1848.
Schnitt A, Lienen T, Wichmann-Schauer H, Tenhagen BA (2021) The occurrence of methicillin-resistant non-aureus staphylococci in samples from cows, young stock, and the environment on German dairy farms. J Dairy Sci 104: 4604-4614.
Shome BR, Bhuvana M, Mitra SD, Krithiga N, Shome R, Velu D, Banerjee A, Barbuddhe S B, Prabhudas K, Rahman H (2012) Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk. Trop Anim Health Prod 44: 1981-1992.
Tsai CJ, Loh JM, Proft T (2016) Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 7: 214-229.
Waseem H, Williams M R, Jameel S, Hashsham S A (2018) Antimicrobial Resistance in the Environment. Water Environ Res 90: 865-884.
Yang JY, Lee SN, Chang SY, Ko HJ, Ryu S, Kweon MN (2014) A mouse model of shigellosis by intraperitoneal infection. J Infect Dis 209: 203-215.
Zastempowska E, Twarużek M, Grajewski J, Lassa H (2022) Virulence Factor Genes and Cytotoxicity of Streptococcus agalactiae Isolated from Bovine Mastitis in Poland. Microbiol Spectr 10: e0222421.
Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure. Here, we developed a capsid protein (Cap)-based enzyme-linked immunosorbent assay (Cap-ELISA) for the detection of PCV2 antibodies in swine serum using a nuclear localization signal-truncated capsid protein produced in Escherichia coli. The Cap protein was expressed as water-soluble and purified using nickel-nitrilotriacetic acid (Ni-NTA) chromatography. After the optimization of the working conditions of the Cap-ELISA using chessboard titrations, a total of 649 serum samples were tested using the Cap-ELISA and a commercial ELISA kit. The diagnostic sensitivity (DSN), diagnostic specificity (DSP) and accuracy of the Cap-ELISA were determined to be 96.7%, 94.1% and 99.5%, respectively. Cross-reactivity analysis indicated that the Cap-ELISA was PCV2-specific and possessed no cross-reactions with antibodies against other common swine pathogens including porcine circovirus type 1 (PCV1), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), porcine parvovirus (PPV), foot and mouth disease virus (FMDV), porcine epidemic diarrhea virus (PEDV) and pseudorabies virus (PRV). Repeatability of the experiment showed that Cap-ELISA was highly repeatable with the intra- and inter-plate coefficients of variation less than 10%. Hence, the Cap-ELISA has the potential for the swine industry to monitor PCV2 epidemiology and to evaluate PCV2 vaccine efficacy.
Afghah Z, Webb B, Meng XJ, Ramamoorthy S (2017) Ten years of PCV2 vaccines and vaccination: Is eradication a possibility? Vet Microbiol 206: 21-28.
Allan GM, Ellis JA (2000) Porcine circoviruses: a review. J Vet Diagn Invest 12: 3-14.
Allan GM, McNeilly F, Kennedy S, Daft B, Clark ED, Ellis JA, Haines DM, Meehan BM, Adair BM (1998) Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest 10: 3-10.
Blanchard P, Mahé D, Cariolet R, Truong C, Le Dimna M, Arnauld C, Rose N, Eveno E, Albina E, Madec FAJ (2003) An ORF2 protein-based ELISA for porcine circovirus type 2 antibodies in post-weaning multisystemic wasting syndrome. Vet Microbiol 94: 183-194.
Bucarey SA, Noriega J, Reyes P, Tapia C, Sáenz L, Zuñiga A, Tobar JA (2009) The optimized capsid gene of porcine circovirus type 2 expressed in yeast forms virus-like particles and elicits antibody responses in mice fed with recombinant yeast extracts. Vaccine 27: 5781-5790.
Chen D, Wei Y, Huang L, Wang Y, Sun J, Du W, Wu H, Liu C (2016) Synergistic pathogenicity in sequential coinfection with Mycoplasma hyorhinis and porcine circovirus type 2. Vet Microbiol 182: 123-130.
Chen S, Li X, Zhang L, Zheng J, Yang L, Niu G, Zhang H, Ren Y, Qian J, Sun C, Ren L (2023) Phylogenetic and structural analysis of porcine circovirus type 2 from 2016 to 2021 in Jilin province, China. Microorganisms 11: 983.
Crowther JR (2000) The ELISA Guidebook. In: Methods Mol Biol. The Humana Press, USA, pp. 1-448.
Dulac GC, Afshar A (1989) Porcine circovirus antigens in PK-15 cell line (ATCC CCL-33) and evidence of antibodies to circovirus in Canadian pigs. Can J Vet Res 53: 431-433.
Ellis J, Clark E, Haines D, West K, Krakowka S, Kennedy S, Allan GM (2004) Porcine circovirus-2 and concurrent infections in the field. Vet Microbiol 98: 159-163.
Ge M, Luo W, Jiang D, Li R, Zhao W, Chen G, Yang X, Yu X (2012a) Development and application of a double-antigen sandwich enzyme-linked immunosorbent assay for detection of antibodies to porcine circovirus 2. Clin Vaccine Immunol 19: 1480-1486.
Ge M, Yan A, Luo W, Hu YF, Li RC, Jiang DL, Yu XL (2013) Epitope screening of the PCV2 Cap protein by use of a random peptide-displayed library and polyclonal antibody. Virus Res 177: 103-107.
Ge X, Wang F, Guo X, Yang H (2012b) Porcine circovirus type 2 and its associated diseases in China. Virus Res 164: 100-106.
Hamel AL, Lin LL, Nayar GP (1998) Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol 72: 5262-5267.
Huang Y, Chen X, Long Y, Yang L, Song W, Liu J, Li Q, Liang G, Yu D, Huang C, Tang X (2021) Epidemiological analysis from 2018 to 2020 in China and prevention strategy of porcine circovirus type 2. Front Vet Sci 8: 753297.
Jacobson RH (1998) Validation of serological assays for diagnosis of infectious diseases. Rev Sci Tech 17: 469-526.
Jin Q, Yang J, Lu Q, Guo J, Deng R, Wang Y, Wang S, Wang S, Chen W, Zhi Y, Wang L, Yang S, Zhang G (2012) Development of an immunochromatographic strip for the detection of antibodies against Porcine circovirus-2. J Vet Diagn Invest 24: 1151-1157.
Kekarainen T, Segalés J (2015) Porcine circovirus 2 immunology and viral evolution. Porcine Health Manag 1: 17.
Liu C, Ihara T, Nunoya T, Ueda S (2004) Development of an ELISA based on the baculovirus-expressed capsid protein of porcine circovirus type 2 as antigen. J Vet Med Sci 66: 237-242.
Liu Q, Tikoo SK, Babiuk LA (2001) Nuclear localization of the ORF2 protein encoded by porcine circovirus type 2. Virology 285: 91-99.
Lv W, Cao L, Yang L, Wang N, Li Z, Huang S, Wen F, Guo J (2023) The prevalence and genetic diversity of porcine circoviruses (PCVs) during 2017–2023 in Guangdong province, China. Animals (Basel) 13: 3640.
Mahé D, Blanchard P, Truong C, Arnauld C, Le Cann P, Cariolet R, Madec F, Albina E, Jestin A (2000) Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes. J Gen Virol 81: 1815-1824.
Nawagitgul P, Morozov I, Bolin SR, Harms PA, Sorden SD, Paul PS (2000) Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol 81: 2281-2287.
Ouyang T, Zhang X, Liu X, Ren L (2019) Co-infection of swine with porcine circovirus type 2 and other swine viruses. Viruses 11: 185.
Patterson AR, Madson DM, Halbur PG, Opriessnig T (2011) Shedding and infection dynamics of porcine circovirus type 2 (PCV2) after natural exposure. Vet Microbiol 149: 225-229.
Pileri E, Cortey M, Rodríguez F, Sibila M, Fraile L, Segalés J (2014) Comparison of the immunoperoxidase monolayer assay and three commercial ELISAs for detection of antibodies against porcine circovirus type 2. Vet J 201: 429-432.
Racine S, Kheyar A, Gagnon CA, Charbonneau B, Dea S (2004) Eucaryotic expression of the nucleocapsid protein gene of porcine circovirus type 2 and use of the protein in an indirect immunofluorescence assay for serological diagnosis of postweaning multisystemic wasting syndrome in pigs. Clin Diagn Lab Immunol 11: 736-741.
Rakibuzzaman A, Ramamoorthy S (2021) Comparative immunopathogenesis and biology of recently discovered porcine circoviruses. Transbound Emerg Dis 68: 2957-2968.
Segalés J (2012) Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res 164: 10-19.
Segalés J, Allan GM, Domingo M (2008) Porcine circovirus diseases. Anim Health Res Rev 6: 119-142.
Shang SB, Jin YL, Jiang XT, Zhou JY, Zhang X, Xing G, He JL, Yan Y (2009) Fine mapping of antigenic epitopes on capsid proteins of porcine circovirus, and antigenic phenotype of porcine circovirus Type 2. Mol Immunol 46: 327-334.
Szczotka A, Stadejek T, Pejsak Z (2011) A comparison of immunohistochemistry and in situ hybridization for the detection of porcine circovirus type 2 in pigs. Pol J Vet Sci 14: 565-571.
Tischer I, Gelderblom H, Vetteermann W, Koch MA (1982) A very small porcine virus with circular single-stranded DNA. Nature 295: 64-66.
Truong C, Mahe D, Blanchard P, Le Dimna M, Madec F, Jestin A, Albina E (2001) Identification of an immunorelevant ORF2 epitope from porcine circovirus type 2 as a serological marker for experimental and natural infection. Arch Virol 146: 1197-1211.
Vincent IE, Balmelli C, Meehan B, Allan G, Summerfield A, McCullough KC (2007) Silencing of natural interferon producing cell activation by porcine circovirus type 2 DNA. Immunology 120: 47-56.
Wang Y, Guo J, Qiao S, Li Q, Yang J, Jin Q, Zhang G (2016) GP5 protein-based ELISA for the detection of PRRSV antibodies. Pol J Vet Sci 19: 495-501.
Yuan XM, Yuan QC, Feng SM, Deng ZB (2022) Evaluation of the protective efficacy of virus-like particles based on PCV 2b and 2d subtypes against mixed challenge in mice. Pol J Vet Sci 25: 195-205.
Zhang J, Wang P, Xie C, Ha Z, Shi N, Zhang H, Li Z, Han J, Xie Y, Qiu X, Tao Y, Jin N, Lu H (2022) Synergistic pathogenicity by coinfection and sequential infection with NADC30-like PRRSV and PCV2 in post-weaned pigs. Viruses 14: 193.
Zheng G, Lu Q, Wang F, Xing G, Feng H, Jin Q, Guo Z, Teng M, Hao H, Li D, Wei X, Zhang Y, Deng R, Zhang G (2020) Phylogenetic analysis of porcine circovirus type 2 (PCV2) between 2015 and 2018 in Henan Province, China. BMC Vet Res 16: 6.
Zhu H, Chang X, Zhou J, Wang D, Zhou J, Fan B, Ni Y, Yin J, Lv L, Zhao Y, He K, Li B (2021) Co-infection analysis of bacterial and viral respiratory pathogens from clinically healthy swine in Eastern China. Vet Med Sci 7: 1815-1819.
AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, NunezGarcia J, Randall LP, Lemma F, Crook DW, Teale C, Smith RP, Anjum MF (2017) mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother 72: 2745-2749.
Adiguzel MC, Baran A, Wu Z, Cengiz S, Dai L, Oz C, Ozmenli E, Goulart DB, Sahin O (2021) Prevalence of colistin resistance in Escherichia coli in eastern Turkey and genomic characterization of an mcr-1 positive strain from retail chicken meat. Microb Drug Resist 27: 424-432.
Alba P, Leekitcharoenphon P, Franco A, Feltrin F, Ianzano A, Caprioli A, Stravino F, Hendriksen RS, Bortolaia V, Battisti A (2018) Molecular epidemiology of mcr-encoded colistin resistance in Enterobacteriaceae from food-producing animals in Italy revealed through the EU harmonized antimicrobial resistance monitoring. Front Microbiol 9: 1217.
Al-Bayssari C, Dabboussi F, Hamze M, Rolain JM (2015) Detection of expanded-spectrum β-lactamases in Gram-negative bacteria in the 21st century. Expert Rev Anti Infect Ther 13: 1139-1158.
Ayaz ND, Cufaoglu G, Yonsul Y, Goncuoglu M, Erol I (2019) Plasmid-mediated colistin resistance in Escherichia coli O157:H7 cattle and sheep isolates and whole-genome sequence of a colistin-resistant sorbitol fermentative Escherichia coli O157:H7. Microb Drug Resist 25: 1497-1506.
Babacan O (2023) First detection of carbapenem resistance in Enterobacteriaceae isolates isolated from dairy cows’ mastitis infection in Türkiye. Ankara Univ Vet Fak Derg 70: 65-74.
Bhoomika SS, Patyal A, Gade NE (2016) Occurrence and characteristics of extended-spectrum β-lactamases producing Escherichia coli in foods of animal origin and human clinical samples in Chhattisgarh, India. Vet World 9: 996-1000.
Borowiak M, Baumann B, Fischer J, Thomas K, Deneke C, Hammerl JA, Szabo I, Malorny B (2020) Development of a novel mcr-6 to mcr-9 multiplex PCR and Assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates. From environment, feed, animals and food (2011-2018) in Germany. Front Microbiol 11: 80.
Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B (2017) Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 72: 3317-3324.
Braun SD, Ahmed MFE, El-Adawy H, Hotzel H, Engelmann I, Weiß D, Monecke S, Ehricht R (2016) Surveillance of extended-spectrum beta-lactamase-producing Escherichia coli in dairy cattle farms in the Nile Delta, Egypt. Front Microbiol 7: 1020.
Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, Pezzotti G, Magistrali CF (2017) Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill 22: 30589.
Carretto E, Brovarone F, Nardini P, Russello G, Barbarini D, Pongolini S, Gagliotti C, Carattoli A, Sarti M (2018) Detection of mcr-4 positive Salmonella enterica serovar Typhimurium in clinical isolates of human origin, Italy, October to November 2016. Eur Surveill 23: 17-00821.
Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M (2019) Identification of novel mobilized colistin resistance gene mcr-9 in a multidrugresistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio 10: e00853-19.
Carvalho IT, Santos L (2016) Antibiotics in the aquatic environments: a review of the European scenario. Environ Int 94: 736-757.
Cornaglia G, Akova M, Amicosante G, Cantón R, Cauda R, Docquier JD, Edelstein M, Frère JM, Fuzi M, Galleni M, Giamarellou H, Gniadkowski M, Koncan R, Libisch B, Luzzaro F, Miriagou V, Navarro F, Nordmann P, Pagani L, Peixe L, Poirel L, Souli M, Tacconelli E, Vatopoulos A, Rossolini GM; ESCMID Study Group for Antimicrobial Resistance Surveillance (ESGARS) (2007) Metallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues. Int J Antimicrob Agents 29: 380-388.
Dubois D, Grare M, Prere MF, Segonds C, Marty N, Oswald E (2012) Performances of the Vitek MS matrix-assisted laser desorption ionization – time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology. J Clin Microbiol 50: 2568-2576.
Duman ve Tekerekoğlu A (2020) Colistin MICs and resistance genes of Acinetobacter Baumannii ısolated in ıntensive care units. Turk J Intensive Care DOI: 10.4274/tybd.galenos. 2020.47965.
Ellington MJ, Kistler J, Livermore DM, Woodford N (2007) Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother 59: 321-322.
EUCAST, European Committee on Antimicrobial Susceptibility Testing (2021) Breakpoint tables for ınterpretation of MICs and zone diameters, EUCAST, Version 11.1. https://www.eucast.org/mic_and_zone_distributions_and_ecoffs
Gurung S, Kafle S, Dhungel B, Adhikari N, Thapa Shrestha U, Adhikari B, Banjara MR, Rijal KR, Ghimire P (2020) Detection of OXA-48 gene in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae from urine smples. Infect Drug Resist 13: 2311-2321.
Güzel M, Avşaroğlu MD, Soyer Y (2020) Determination of colistin resistance in Escherichia coli isolates from foods in Turkey, 2011-2015. Food Health 6: 160-169.
Haenni M, Beyrouthy R, Lupo A, Chatre P, Madec JY, Bonnet R (2018) Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX- M-55 in cattle in France. J Antimicrob Chemother 73: 533-536.
Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM (2005) beta-Lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J Antimicrob Chemother 56: 115-121.
Hassan J, Eddine RZ, Mann D, Li S, Deng X, Saoud IP, Kassem II (2020) The mobile colistin resistance gene, mcr-1.1, ıs carried on IncX4 plasmids in multi-drug resistant E. coli ısolated from rainbow trout aquaculture. Microorganisms 23: 1636.
Hernandez M, Iglesias MR, Rodriguez-Lázaro D, Gallardo A, Quijada N, Miguela-Villoldo P, Campos MJ, Piriz S, Lopez-Orozco G, de Frutos C, Saez JL, Ugarte-Ruiz M, Dominguez L, Queseda A (2017) Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015. Euro Surveill 22: 30586.
Huang X, Yu L, Chen X, Zhi C, Yao X, Liu Y, Wu S, Guo Z, Yi L, Zeng Z, Liu JH (2017) High prevalence of colistin resistance and mcr-1 gene in Escherichia coli isolated from food animals in China. Front Microbiol 8: 562.
Kawanishi M, Abo H, Ozawa M, Uchiyama M, Shirakawa T, Suzuki S, Shima A, Yamashita A, Sekizuka T, Kato K, Kuroda M, Koike R, Kijimaet M (2017) Prevalence of colistin resistance gene mcr-1 and absence of mcr-2 in Escherichia coli isolated from healthy food-producing animals in Japan. Antimicrob Agents Chemothe 61: e02057-16.
Khalifa HO, Ahmed AM, Oreiby AF, Eid AM, Shimamoto T, Shimamoto T (2016) Characterisation of the plasmidmediated colistin resistance gene mcr-1 in Escherichia coli isolated from animals in Egypt. Int J Antimicrob Agents 47: 413-414.
Kilianski, A, Haas JL, Corriveau EJ, Liem AT, Willis KL, Kadavy DR, Rosenzweig CN, Minot SS (2015) Bacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer. Gigascience 4: 12.
Kuenzli E (2016) Antibiotic resistance and international travel: causes and consequences. Travel Med Infect Dis 14: 595-598.
Kurekci C, Aydin M, Nalbantoglu OU, Gundogdu A (2018) First report of Escherichia coli carrying the mobile colistin resistance gene mcr-1 in Turkey. J Glob Antimicrob Resist. 15: 169-170.
Laxminarayan R, Matsoso P, Pant S, Brower C, Røttingen JA, Klugman K, Davies S (2016) Access to effective antimicrobials: a worldwide challenge. Lancet 387: 168-175.
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16: 161-168.
Luo Q, Wang Y, Xiao Y (2020) Prevalence and transmission of mobilized colistin resistance (mcr) gene in bacteria common to animals and humans. Biosaf Health 2: 71-78.
McEachran AD, Blackwell BR, Hanson JD, Wooten KJ, Mayer GD, Cox SB, Smith PN (2015) Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environ Health Perspect 123: 337-343.
Nakano A, Nakano R, Nishisouzu R, Suzuki Y, Horiuchi S, Kikuchi-Ueda T, Ubagai T, Ono Y, Yano H (2021) Prevalence and Relatedness of mcr-1-Mediated colistin-resistant Escherichia coli ısolated from livestock and farmers in Japan. Front. Microbiol 12: 664931.
Nicolaou KC, Rigol S (2018) A brief history of antibiotics and select advances in their synthesis. J Antibiot (Tokyo) 71: 153-184.
Otlu B, Yakupoğulları Y, Gürsoy NC, Duman Y, Bayındır Y, Tekerekoğlu MS, Ersoy Y (2018) Co-production of OXA-48 and NDM-1 Carbapenemases in Providencia rettgeri: the first report. Mikrobiyol Bul 52: 300-307.
Özkaya E, Buruk CK, Tosun İ, Toraman B, Kaklıkkaya N, Aydın F (2020) Investigation of plasmid mediated mcr colistin resistance gene in clinical Enterobacterales isolates. Mikrobiyol Bul 54:191-202.
Pai H, Lyu S, Lee JH, Kim J, Kwon Y, Kim JW, Choe KW (1999) Survey of extended-spectrum β-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae: prevalence of TEM-52 in Korea. J Clin Microbiol 37: 1758-1763.
Patel G, Bonomo RA (2013) Stormy waters ahead: global emergence of carbapenemases. Front Microbiol 4: 48.
Poirel L, Naas T, Nordmann P (2010) Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob Agents Chemother 54: 24-38.
Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70: 119-123.
Queenan AM, Bush K (2007) Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20: 440-458.
Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IM, Guerra B, Malorny B, Borowiak M, Hammerl JA, Battisti A, Franco A, Alba P, Perrin-Guyomard A, Granier SA, De Frutos Escobar C, Malhotra-Kumar S, Villa L, Carattoli A, Hendriksen RS (2018) Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill 23: 17-00672.
Sarı AN, Süzük S, Karatuna O, Öğünç D, Karakoç AE, Çizmeci Z, Alışkan HE, Cömert F, Bakıcı MZ, Akpolat N, Çilli FF, Zer Y, Karataş A, Akgün Karapınar B, Bayramoğlu G, Özdamar M, Kalem F, Delialioğlu N, Aktaş E, Yılmaz N, Gürcan S, Gülay Z (2017) Results of a multicenter study ınvestigating plasmid mediated colistin resistance genes (mcr-1 and mcr-2) in clinical Enterobacteriaceae ısolates from Turkey. Mikrobiyol Bul 51: 299-303.
Skov RL, Monnet DL (2016) Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Eurosurveill 21: 30155
Sturenburg E, Kühn A, Mack D, Laufs R (2004) A novel extended-spectrum β-lactamase CTX-M-23 with a P167T substitution in the active-site omega loop associated with ceftazidime resistance. J Antimicrobial Chemother 54: 406-409.
Sun J, Zeng X, Li XP, Liao XP, Liu YH, Lin J (2017) Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 18: 136-152.
TEPAV (2019) Antimicrobial resistance in Turkey: Economic evaluation and recommendations. TEPAV: 1-30. https://www.tepav.org.tr/upload/files/1504774735-1.Turkiye’de Antimikrobiyal Direnç Ekonomik Degerlendirme ve Oneriler.pdf.
Wang C, Feng Y, Liu L, Wei L, Kang M, Zong Z (2020) Identification of novel mobile colistin resistance gene mcr-10. Emerg Microb Infect 9: 508-516.
Wang R, van Dorp L, Shaw LP, Bradley P, Wang Q, Wang X, Jin L, Zhang Q, Liu Y, Rieux A (2018) The global distribution and spread of the mobilized colistin resistance gene mcr-1, Nat Communi 9: 1179.
Wang X, Wang Y, Zhou Y, Wang Z, Wang Y, Zhang S, Shen Z (2019) Emergence of colistin resistance gene mcr-8 and its variant in Raoultella ornithinolytica. Fron Microbiol 10: 228.
Westblade LF, Jennemann R, Branda JA, Bythrow M, Ferraro MJ, Garner OB, Ginocchio CC, Lewinski MA, Manji R, Mochon AB, Procop GW, Richter SS, Rychert JA, Sercia L, Burnham CA (2013) Multicenter study evaluating the Vitek MS system for identification of medically important yeasts. J Clin Microbiol 51: 2267-2272.
WHO. World Health Organization (2021) Antibiotic resistance, https://www.who.int/news-room/fact-sheets/detail/antibio
ticresistance.
Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, Malhotra-Kumar S (2016) Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurossurveill 21: 30280.
Yang YQ, Li YX, Lei CW, Zhang AY, Wang HN (2018) Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumonia. J Antimicrob Chemother 73: 1791-1795.
Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, Zhang R, Walsh TR, Shen J, Wang Y (2017) Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio 8: e00543-17.
Yong JW, Ge L, Ng YF, Tan SN (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14: 5144-5164.
Zając M, Sztromwasser P, Bortolaia V, Leekitcharoenphon P, Cavaco LM, Ziȩtek-Barszcz A, Hendriksen RS, Wasyl D (2019) Occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011-2016. Front Microbiol 10: 1753.
Zhang X, Zhang B, Guo Y, Wang J, Zhao P, Liu J, He K (2019) Colistin resistance prevalence in Escherichia coli from domestic animals in intensive breeding farms of Jiangsu Province. Int J Food Microbiol 291: 87-90.
Adamski M, Kuźnicka J, Banaszak M, Wegner M (2016) The analysis of meat traits of Sussex cockerels and capons (S11) at different ages. Poult Sci 95: 125-132.
Amorim A, Rodrigues S, Pereira E, Valentim R, Teixeira A (2016) Effect of caponisation on physicochemical and sensory characteristics of chickens. Animal 10: 978-986.
Baldi G, Soglia F, Laghi L, Tappi S, Rocculi P, Tavaniello S, Prioriello D, Mucci R, Maiorano G, Petracci M (2019) Comparison of quality traits among breast meat affected by current muscle abnormalities. Food Res Int 115: 369-376.
Bosona T, Gebresenbet G (2018) Swedish consumers’ perception of food quality and sustainability in relation to organic food production. Foods 7: 54
Calik J (2014) Capon production – breeding stock, rooster castration and rearing methods, and meat quality – a review. Ann Anim Sci 14: 769-777.
Calik J, Krawczyk J, Świątkiewicz S, Gąsior R, Wojtycza K, Połtowicz K, Obrzut J, Puchała M (2017) Comparison of the physicochemical and sensory characteristics of Rhode Island Red (R-11) capons and cockerels. Ann Anim Sci 17: 903-917.
Calik J, Połtowicz K, Świątkiewicz S, Krawczyk J, Nowak J (2015) Effect of caponization on meat quality of Greenleg Partridge cockerels. Ann Anim Sci 15: 541-553.
Chen KL, Chi WT, Chiou PW (2005) Caponization and testosterone implantation effects on blood lipid and lipoprotein profile in male chickens. Poult Sci 84: 547-552.
Chen KL, Hsieh TY, Chiou PW (2006) Caponization effects on growth performance and lipid metabolism in Taiwan country cockerels. Asian-Aust J Anim Sci 19: 438-443.
Chen SY, Li TY, Tsai CH, Lo DY, Chen KL (2014) Gender, caponization and exogenous estrogen effects on lipids, bone and blood characteristics in Taiwan country chickens. Anim Sci J 85: 305-312.
Chen TT, Huang CC, Lee TY, Lin KJ, Chang CC, Chen KL (2010) Effect of caponization and exogenous androgen implantation on muscle characteristics of male chicken. Poult Sci 89: 558-563.
Choo YK, Oh ST, Lee KW, Kang CW, Kim HW, Kim CJ, Kim EJ, Kim HS, An BK. (2014). The growth performance, carcass characteristics, and meat quality of egg-type male growing chicken and white-mini broiler in comparison with commercial broiler (Ross 308). Korean J Food Sci Anim Resour 34: 622-629.
Cui X, Liu R, Cui H, Zhao G, Zheng M, Li Q, Liu J, Liu Z, Wen J (2017) Effects of caponization and ovariectomy on objective indices related to meat quality in chickens. Poult Sci 96: 770-777.
Diaz O, Rodriguez L, Torres A, Cobos A (2010) Chemical composition and physico-chemical properties of meat from capons as affected by breed and age. Span J Agric Res 8: 91-99.
Duran AM (2004) The effect of caponization on production indices and carcass and meat characteristics in free-range Extremena Azul chickens. Span J Agric Res 2: 211-216.
Essien A, Akpet SO, Ukorebi BA, Orok EE, Akinola LA, Ayuk EA, Adejumo DO (2012) Growth and agonistic responses of Yaffa Breed cockerels administered testosterone propionate. J Biol Agric Healt 2: 8-14.
Franco D, Pateiro M, Rois D, Vazquez JA, Lorenzo JM (2016) Effects of caponization on growth performance, carcass and meat quality of mos breed capons reared in free-range production system. Ann Anim Sci 16: 909-929.
Gesek M, Murawska D, Otrocka-Domagała I (2019a) Three-point scale of lipid concentration and localization in muscle tissue of birds using Oil Red O staining. Ann Anim Sci 19: 539-552.
Gesek M, Murawska D, Otrocka-Domagała I, Michalska K, Zawacka M (2019b) Effects of caponization and age on the histology, lipid localization and fiber diameter in muscles from Leghorn cockerels. Poult Sci 98: 1354-1362.
Gesek M, Murawska D, Otrocka-Domagała I, Paździor-Czapula K, Michalska K (2019c) Effects of caponisation and age on the histology of the internal organs of Leghorn cockerels. Br Poult Sci 60: 176-185.
Gesek M, Zawacka M, Murawska D (2017) Effects of caponization and age on the histology, lipid localization, and fiber diameter in muscles from Greenleg Partridge cockerels. Poult Sci 96: 1759-1766.
Koenig M, Hahn G, Damme K, Schmutz M (2012) Utilization of laying-type cockerels as „coquelets“: Influence of genotype and diet characteristics on growth performance and carcass composition. Arch Geflügelk 76: 197-202.
Kuttappan VA, Shivaprasad HL, Shaw DP, Valentine BA, Hargis BM, Clark FD, McKee SR, Owens CM (2013) Pathological changes associated with white striping broiler breast muscles. Poult Sci 92: 331-338.
Kwiecień M, Kasperek K, Grela E, Jeżewska-Witkowska G (2015) Effect of caponization on the production performance, slaughter yield and fatty acid profile of muscles of Greenleg Partridge cocks. J Food Sci Technol 52: 7227-7235.
Lebednikaite E, Anskiene L, Balciauskiene Z, Pockevicius A (2023) The incidence and associated risk factors affecting myopathies in broiler chickens in Lithuania. Pol J Vet Sci 3: 483-491.
Lin CY, Hsu JC (2002) Effects of surgical caponization on growth performance, fiber diameter and some physical properties of muscles in Taiwan country chicken cockerels. Asian-Aust J Anim Sci 15: 401-405.
Long TB, Blok V (2017) Integrating the management of socio-ethical factors into industry innovation: towards a concept of Open Innovation 2.0. Int Food Agribus Manag Rev 21: 463-486.
MacRae VE, Mahon M, Gilpin S, Sandercock DA, Mitchell MA (2006) Skeletal muscle fibre growth and growth associated myopathy in the domestic chicken (Gallus domesticus). Br Poult Sci 47: 264-272.
Mazzoni M, Petracci M, Meluzzi A, Cavani C, Clavenzani P, Sirri F (2015) Relationship between pectoralis major muscle histology and quality traits of chicken meat. Poult Sci 94: 123-130.
Miguel JA, Ciria J, Asenjo B, Calvo JL (2008) Effect of caponisation on growth and on carcass and meat characteristics in Castellana Negra native Spanish chickens. Animal 2: 305-311.
Murawska D, Bochno R (2007) Comparison of the slaughter quality of layer-type cockerels and broiler chickens. J Poult Sci 44: 105-110.
Murawska D, Gesek M, Witkowska D (2019) Suitability of layer-type male chicks for capon production. Poult Sci 98: 3345–3351.
Petracci M, Soglia F, Madruga M, Carvalho L, Ida E, Estévez M (2019) Wooden-Breast, White Striping, and Spaghetti Meat: Causes, Consequences and Consumer Perception of Emerging Broiler Meat Abnormalities. Compr Rev Food Sci Food Saf 18: 565-583.
Quaresma MA, Antunes IC, Ribeiro MF, Prazeres S, Bessa RJ, Da Costa PM (2017) Immunocastration as an alternative to caponisation: evaluation of its effect on body and bone development and on meat color and composition. Poult Sci 96: 3608-3615.
Rahman MM, Islam MA, Ali MY, Khondaker ME, Hossain MM (2004) Effect of caponization on body weight, hematological traits and blood cholesterol concentration of Nara chickens. Int J Poult Sci 3: 284-286.
Sinanoglou VJ, Mantis F, Miniadis-Meimaroglou S, Symeon GK, Bizelis IA (2011). Effects of caponisation on lipid and fatty acid composition of intramuscular and abdominal fat of medium-growth broilers. Br Poult Sci 52: 310-317.
Sirri F, Bianchi M, Petracci M, Meluzzi A (2009) Influence of partial and complete caponization on chicken meat quality. Poult Sci 88: 1466-1473.
Symeon GK, Mantis F, Bizelis I, Kominakis A, Rogdakis E (2010) Effects of caponization on growth performance, carcass composition, and meat quality of medium growth broilers. Poult Sci 89: 1481-1489.
Valenta J, Siddique A, Tůmová E, Slavíček O, Morey A (2023) White striping, woody breast and spaghetti meat: cooccurrence and relationship with breast fillet weight in big broiler chicken flocks. Czech J Anim Sci 68:129-140.
Zawacka M, Murawska D, Gesek M (2017) The effect of age and castration on the growth rate, blood lipid profile and liver histology in Green-legged Partridge cockerels and capons. Animal 11: 1017-1026.
Alberto-Orlando S, Calderon JL, Leon-Sosa A, Patiño L, Zambrano-Alvarado MN, Pasquel-Villa LD, Rugel-Gonzalez DO, Flores D, Mera MD, Valencia P, Zuñiga-Velarde JJ, Tello-Cabrera C, Garcia-Bereguiain MA (2022) SARS-CoV-2 transmission from infected owner to household dogs and cats is associated with food sharing. Int J Infect Dis 122: 295-299.
Barroso R, Vieira-Pires A, Antunes A, Fidalgo-Carvalho I (2022) Susceptibility of pets to SARS-CoV-2 infection: Lessons from a seroepidemiologic survey of cats and dogs in Portugal. Microorganisms 10: 345.
Barua S, Hoque M, Adecanmbi F, Kelly P, Jenkins-Moore M, Torchetti MK, Chenoweth K, Wood T, Wang C (2021) Antibodies to SARS-CoV-2 in dogs and cats, USA. Emerg Microbes Infect 10: 1669-1674.
Curukoglu A, Ergoren MC, Ozgencil FE, Sayiner S, Ince ME, Sanlidag T (2021) First direct human-to-cat transmission of the SARS-CoV-2 B.1.1.7 variant. Aust Vet J 99: 482-488.
Diezma-Díaz C, Álvarez-García G, Regidor-Cerrillo J, Miró G, Villanueva-Saz S, Dolores Pérez M, Verde MT, Galán-Malo P, Brun A, Moreno S, Checa R, Montoya A, Van Voorhis WC, Ortega-Mora LM (2023) A comparative study of eight serological methods shows that spike protein-based ELISAs are the most accurate tests for serodiagnosing SARS-CoV-2 infections in cats and dogs. Front Vet Sci 10: 1121935
EFSA Panel on Animal Health and Welfare (AHAW), Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin-Bastuji B, Gonzales Rojas Jé L, Gortázar C, Herskin M, Michel V, Miranda Chueca M, Padalino B, Pasquali P, Roberts HC, Spoolder H, Velarde A, Viltrop A, Winckler C, Adlhoch C, Aznar I, Baldinelli F, Boklund A, Broglia A, Gerhards N, Mur L, Nannapaneni P, Ståhl K (2023) SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J 21: e07822.
Frazzini S, Amadori M, Turin L, Riva F (2022) SARS-CoV-2 infections in animals, two years into the pandemic. Arch Virol 167: 2503-2517.
Fritz M, Rosolen B, Krafft E, Becquart P, Elguero E, Vratskikh O, Denolly S, Boson B, Vanhomwegen J, Gouilh MA, Kodjo A, Chirouze C, Rosolen SG, Legros V, Leroy EM (2020) High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health 11: 100192.
Frutos R, Devaux CA (2020) Mass culling of minks to protect the COVID-19 vaccines: is it rational? New Microbes New Infect 38: 100816.
Gaudreault NN, Trujillo JD, Carossino M, Meekins DA, Morozov I, Madden DW, Indran SV, Bold D, Balaraman V, Kwon T, Artiaga BL, Cool K, García-Sastre A, Ma W, Wilson WC, Henningson J, Balasuriya UB, Richt JA (2020) SARS-CoV-2 infection, disease and transmission in domestic cats. Emerg Microbes Infect 9: 2322-2332.
Goletic S, Goletic T, Softic A, Zahirovic A, Rukavina D, Kavazovic A, Omeragic J, Umihanic S, Hukic M (2022) The Evidence of SARS-CoV-2 Human-to-Pets Transmission in Household Settings in Bosnia and Herzegovina. Front Genet 13: 839205.
Grome HN, Meyer B, Read E, Buchanan M, Cushing A, Sawatzki K, Levinson KJ, Thomas LS, Perry Z, Uehara A, Tao Y, Queen K, Tong S, Ghai R, Fill MM, Jones TF, Schaffner W, Dunn J (2022) SARS-CoV-2 Outbreak among Malayan Tigers and Humans, Tennessee, USA, 2020. Emerg Infect Dis 28: 833-836.
Guo R, Wolff C, Prada JM, Mughini-Gras L (2023) When COVID-19 sits on people’s laps: A systematic review of SARS-CoV-2 infection prevalence in household dogs and cats. One Health 16: 100497.
Jairak W, Charoenkul K, Chamsai E, Udom K, Chaiyawong S, Hangsawek A, Waenkaew S, Mungaomklang A, Tangwangvivat R, Amonsin A (2022) Survey of SARS-CoV-2 in dogs and cats in high-risk areas during the second wave of COVID-19 outbreak, Thailand. Zoonoses Public Health 69: 737-745.
Kamel MS, El-Sayed AA, Munds RA, Verma MS (2023) Interactions between humans and dogs during the COVID-19 pandemic: Recent updates and future perspectives. Animals (Basel) 13: 524.
Kuchipudi SV, Surendran-Nair M, Ruden RM, Yon M, Nissly RH, Vandegrift KJ, Nelli RK, Li L, Jayarao BM, Maranas CD, Levine N, Willgert K, Conlan AJ, Olsen RJ, Davis JJ, Musser JM, Hudson PJ, Kapur V (2022) Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proc Natl Acad Sci USA 119: e2121644119.
Lalošević D, Stankov S, Bojat V, Lazić S, Petrović T, Vidanović D, Vujin D, Simin V, Lalošević V (2021) Novel coronavirus (SARS-CoV-2) isolates Novi Sad 2021, identification and inactivation. MD-Medical Data 13: 055-058.
Lawrence P, Raquet M (2022) COVID-19, from an emerging infectious disease to a global pandemic: How ecological, biological and epidemiological factors can influence the emergence of zoonotic pathogens. Rev Confl Sci Human 1: 29-57.
Mahajan S, Karikalan M, Chander V, Pawde AM, Saikumar G, Semmaran M, Lakshmi PS, Sharma M, Nandi S, Singh KP, Gupta VK, Singh RK, Sharma GK (2022) Detection of SARS-CoV-2 in a free ranging leopard (Panthera pardus fusca) in India. Eur J Wildl Res 68: 59.
Nederlof RA, de la Garza MA, Bakker J (2024) Perspectives on SARS-CoV-2 cases in zoological institutions. Vet Sci 11: 78.
Onen EA, Demirci EK (2024) Development and preclinical evaluation of equine-derived hyperimmune serum against SARS-CoV-2 infection in K-18 hACE2 transgenic (Tg) mice. Pol J Vet Sci 27: 61-74.
Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, van der Spek A, Tolsma P, Rietveld A, Brouwer M, Bouwmeester-Vincken N, Harders F, Hakze-van der Honing R, Wegdam-Blans MC, Bouwstra RJ, GeurtsvanKessel C, van der Eijk AA, Velkers FC, Smit LA, Stegeman A, van der Poel WH, Koopmans MP (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371: 172-177.
Piewbang C, Poonsin P, Lohavicharn P, Wardhani SW, Dankaona W, Puenpa J, Poovorawan Y, Techangamsuwan S (2022) SARS-CoV-2 transmission from human to pet and suspected transmission from pet to human, Thailand. J Clin Microbiol 60: e0105822.
Rupprecht CE, Fooks AR, Abela-Ridder B (2018) Laboratory techniques in rabies. 5th ed., Vol. 1. World Health Organization, pp 196-218.
Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, He X, Shuai L, Sun Z, Zhao Y, Liu P, Liang L, Cui P, Wang J, Zhang X, Guan Y, Tan W, Wu G, Chen H, Bu Z (2020) Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS – coronavirus 2. Science 368: 1016-20.
Sia SF, Yan LM, Chin AW, Fung K, Choy KT, Wong AY, Kaewpreedee P, Perera RA, Poon LL, Nicholls JM, Peiris M, Yen HL (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583: 834-838.
Sila T, Sunghan J, Laochareonsuk W, Surasombatpattana S, Kongkamol C, Ingviya T, Siripaitoon P, Kositpantawong N, Kanchanasuwan S, Hortiwakul T, Charernmak B, Nwabor OF, Silpapojakul K, Chusri S (2022) Suspected Cat-to-Human Transmission of SARS-CoV-2, Thailand, July-September 2021. Emerg Infect Dis 28: 1485-1488.
Sit TH, Brackman CJ, Ip SM, Tam KW, Law PY, To EM, Yu VY, Sims LD, Tsang DN, Chu DK, Perera RA, Poon LL, Peiris M (2020) Infection of dogs with SARS-CoV-2. Nature 586: 776-778.
Sparrer MN, Hodges NF, Sherman T, VandeWoude S, Bosco-Lauth AM, Mayo CE (2023) Role of Spillover and Spillback in SARS-CoV-2 Transmission and the Importance of One Health in Understanding the Dynamics of the COVID-19 Pandemic. J Clin Microbiol 61: e0161022.
Stanojevic S, Radojicic S, Misic D, Srejic D, Vasiljevic DV, Prokic K, Ilic N (2022) Frequency of SARS-CoV-2 infection in dogs and cats: Results of a retrospective serological survey in Šumadija District, Serbia. Prev Vet Med 208: 105755.
Stevanovic V, Vilibic-Cavlek T, Tabain I, Benvin I, Kovac S, Hruskar Z, Mauric M, Milasincic L, Antolasic L, Skrinjaric A, Staresina V, Barbic, Lj (2021a) Seroprevalence of SARS-CoV-2 infection among pet animals in Croatia and potential public health impact. Transbound Emerg Dis 68: 1767-1773.
Stevanovic V, Tabain I, Vilibic-Cavlek T, Mauric Maljkovic M, Benvin I, Hruskar Z, Kovac S, Smit I, Miletic G, Hadina S, Staresina V, Radin L, Plichta V, Skrlin B, Vrbanac Z, Brkljacic M, Cvetnic M, Habus J, Martinkovic K, Zecevic I, Jurkic G, Ferencak I, Stritof Z, Perharic M, Bucic L, Barbic L (2021b) The Emergence of SARS-CoV-2 within the Dog Population in Croatia: Host Factors and Clinical Outcome. Viruses 13: 1430.
van Aart AE, Velkers FC, Fischer EA, Broens EM, Egberink H, Zhao S, Engelsma M, Hakze-van der Honing RW, Harders F, de Rooij MM, Radstake C, Meijer PA, Munnink BB, de Rond J, Sikkema RS, van der Spek AN, Spierenburg M, Wolters WJ, Molenaar RJ, Koopmans MP, van der Poel WH, Stegeman A, Smit LA (2022) SARS-CoV-2 infection in cats and dogs in infected mink farms. Transbound Emerg Dis 69: 3001-3007.
Wang YB, Wang SW, Jin QY, Chen LP, Zhang FQ, Shi JJ, Yin Y, Fan ZX, Liu XY, Wang LP, Li P (2023) Expression of water-soluble nucleocapsid protein of SARS-CoV-2 and analysis of its immunogenicity. Pol J Vet Sci 26: 571-579.
WHO (2024) https://www.who.int/publications/i/item/WHO-WHE-SPP-2023.1
Wilson C (2023) Covid-19 may have first jumped to people via raccoon dogs. New Sci 257: 9.
WOAH (2020) https://bulletin.woah.org/?panorama=01-1-2020-2_editorial
WOAH (2023) https://www.woah.org/app/uploads/2023/07/sars-cov-2-situation-report-22.pdf
Yen HL, Sit TH, Brackman CJ, Chuk SS, Gu H, Tam KW, Law PY, Leung GM, Peiris M, Poon LL, HKU-SPH study team (2022) Transmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters to humans, leading to onward human-to-human transmission: a case study. Lancet 399: 1070-1078.
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273.
Birds of prey raised in captivity have direct contact with the environment and are fed raw meat various animals, which increases the risk of infections caused by parasites, including endoparasites. The aim of this study was to evaluate the prevalence of endoparasites in predatory birds of the orders Accipitriformes and Falconiformes that are used in falconry in Poland. Fresh feces were sampled from 52 birds, including 16 saker falcons (Falco cherrug), 8 lanner falcons (Falco biarmicus), 7 peregrine falcons (Falco peregrinus), 8 Harris’s hawks (Parabuteo unicinctus), 7 Eurasian goshawks (Accipiter gentilis), 3 common kestrels (Falco tinnunculus), 1 Eurasian sparrowhawk (Accipiter nisus), 1 red-tailed hawk (Buteo jamaicensis), and 1 common buzzard (Buteo buteo). Fecal samples were analyzed with the use of Fülleborn’s floatation technique and the McMaster method (OPG/EPG). Dispersive forms of parasites were identified in 17 out of 52 fecal samples (32,69%). Protozoa of the genus Avispora and Nematodes of the genera Porrocaecum sp and Capillaria were detected. The predominant parasites were roundworms (Porrocaecum sp) which were identified in 27% of the samples. Polish falconers were surveyed to obtain information about bird rearing conditions, the administered feed, contact with wild fauna, incidence of parasitic infections, and the applied treatments. The survey showed that the housing conditions ensured contact with wild fauna, and the majority of owners (63,6%) feed their birds with part of the game they caught. The majority (81%) of falconers did not notice any clinical signs of infection in their infected birds, indicating the need to examine them regularly. The results of the survey were compared with the findings of the parasitological analysis. This study reports on the prevalence of endoparasites in birds of prey, and the present findings can be used by falconers to optimize the management and welfare of predatory birds.
Baruš V, Sergejeva TP (1989a) Capillarids parasitic in birds in the Palaearctic region (2). Genera Eucoleus and Echinocoleus. Acta Scientiarum Naturalium Academiae Scientiarum Bohemoslovacae 23: 1-47.
Brüll H (1932) A capillaria in pharnyx and osespohagus of a peregrine falcon. Deut Tierarztl Wochenschr 40: 293-294.
Clausen B, Gudmundsson F (1981) Causes of mortality among free-ranging gyrfalcons in Iceland. J Wild Dis 17: 105-109.
Cooper JE (1969) Oesophageal capillariasis in captive falcons. Vet Rec 84: 634–636.
Dahl C, Permin A, Christensen JP, Bisgaard M, Muhairwa AP, Petersen KM, Poulsen JS, Jensen AL (2002) The effect of concurrent infections with Pasteurella multocida and Ascaridia galli on free range chickens. Vet Microbiol 86: 313-24.
Davydova OE, Vasilevytch FI, Pimenov NV (2016) Clinical-laboratory studies of the birds of prey of the order falconiformes contained in the conditions of kennel. Int J Pharm Res Allied Sci 5: 85-94.
Dopierała A, Kruk R (2022) Marginalized heritage Brać Łowiecka 2: 51.
Forbes NA (2008) Raptors: parasitic disease. BSAVA Manual of Raptors, Pigeons and Passerine Birds. British Small Animal Veterinary Association, Gloucester UK, pp 202-211.
Greve JH (1996a) Gastrointestinal parasites. Rosskopf WJ and Woerpel R (Eds.) Diseases of cage and aviary birds. 3rd ed. Philadelphia. London. Paris. Williams & Wilkins. Baltimore, pp 613-619.
Gundłach JL, Sadzikowski AB (2004) Parasitology i parasitoses of animals. State Agricultural and Forestry Publishing House, Warsaw, Poland, pp 468.
Hawks S, Klann R (1997) Helminth Ova Recovered From Raptors Admitted For Rehabilitation, J Iowa Acad Sci 104: 47-49.
Heidenreich M (1997) Parasitic diseases. Birds of prey, Medicine and management. Blackwell Science, Oxford, Wiley, UK, pp 131-148.
Juárez A, García YM, Sauza RP, Luna JC, Samour J (2020) Prevalence of Caryospora (Apicomplexa: Eimeriidae) Oocysts in the Environment of a Gyrfalcon (Falco rusticolus) Breeding Center in the United Arab Emirates. J Avian Med Surg 34:152-157.
Komorová P, Sitko J, Špakulová M, Hurnikova Z, Sałamatin R, Chovancová G (2017) New data on helminth fauna of birds of prey (Falconiformes, Accipitriformes, Strigiformes) in the Slovak Republic. Helminthologia. 54: 314-321.
Krone O (2007) Endoparasites-Raptor Research and Management Techniques Manual. Hancock House Publishers, USA, pp 318-328.
Krone O, Lumeij JT, Remple JD, Redig PT, Lierz M, Cooper JE (2000) Raptor Biomedicine III. Zoological Education Network, Inc., Lake Worth, Florida, pp 101-116.
Kutzer E, Frey H, Kotremba J (1980) Parasites of Austrian birds of prey (Falconiformes). Angew Parasitol 21:183-205.
Lacina D, Bird DM, Lumeij JT, Remple JD, Redig PT, Lierz M, Cooper JE (2000) Raptor Biomedicine III, Zoological Education Network, Inc., Lake Worth, Florida, pp 65-99.
Levine ND (1968) Nematode Parasites of Domestic Animals and of Man. Burgess Publishing Company, Minneapolis, pp 1-600.
Mawson PM (1956) Ascaroid nematodes from Canadian birds. Can J Zool 34: 35-47.
Mateuta VDS, Samour JH (2017) Prevalence of Caryospora Species (Apicomplexa: Eimeriidae) in Falcons in the United Arab Emirates. J Avian Med Surg 31: 327-334.
Ministry of Agriculture, Fisheries and Food (1986) Manual of veterinary parasitological laboratory techniques, reference book. Great Britain. Ministry of Agriculture, Fisheries and Food, London, UK, pp 1-160.
Mozgovoĭ, AA (1968). Ascaridata of animals and man and the diseases caused by them: (Askaridaty zhivotnykh i cheloveka i vyzyvaemye imi zabolevaniya). Israel Program for Scientific Translations [available from the U.S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springfield, Va.], Israel, pp 335-389.
Olsen OW (1974) Animal Parasites. Their Life Cycles and Ecology. University Park Press, Baltimore, pp. 1-562.
Osche G (1959) On intermediate and accidental hosts, and on the ontogeny of the labial region in species of Porrocaecum and Contracaecum (in German). Zeitsch Parasitenkunde¨ 19: 458–484.
Papini R, Girivetto M, Marangi M, Mancianti F, Giangaspero A (2012) Endoparasite infections in pet and zoo birds in Italy. ScientificWorldJournal 2012: 253127.
Sanmartín ML, Alvarez F, Barreiro G, Leiro J (2004) Helminth fauna of Falconiform and Strigiform birds of prey in Galicia, Northwest Spain. Parasitol Res 92: 255-263.
Santana-Sánchez G, Flores-Valle IT, González-Gómez M, Vega-Sánchez V, Salgado-Miranda C, Soriano-Vargas E (2015) Caryospora neofalconis and other enteroparasites in raptors from Mexico. Int J Parasitol Parasites Wildl 4: 351-355.
Santoro M, Tripepi M, Kinsella JM, Panebianco A, Mattiucci S (2010) Helminth infestation in birds of prey (Accipitriformes and Falconiformes) in Southern Italy. Vet J 186: 119-122.
Santos T, de Oliveira JB, Vaughan C, Santiago H (2011) Health of an ex situ population of raptors (Falconiformes and Strigiformes) in Mexico: diagnosis of internal parasites. Rev Biol Trop 59: 1265-1274.
Smith SA, Redig PT, Cooper JE, Remple JD, Hunter DB (1993) Diagnosis and treatment of helminths in birds of prey. Raptor Biomedicine. University of Minnesota Press, Minneapolis, USA, pp 21-27.
Tarello W (2008) Efficacy of ivermectin (Ivomec) against intestinal capilariosis in falcons. Parasite 15: 171-174.
Trainer D, Foltz S, Samuel WM (1968) Capillariasis in the Gyrfalcon. The Condor 70: 276-277.
Upton SJ, Sundermann CA (1990) Caryospora: Biology, Coccidiosis of Man and Domestic Animals, CRC Press, Boca Raton, pp 187-204.
Yabsley MJ (2008) Capillarid nematodes. Parasitic Diseases of Wild Birds. John Wiley & Sons, Inc, pp 463-497.
Intermediate filaments (IFs) play a major role in determining and maintaining cell shape and anchoring intracellular organelles in place, in the tissues and organs of several species, starting from the early stages of development. This study was aimed at the immunohistochemical investigation of the presence, cellular localization and temporal distribution of the intermediate filaments keratin 8 (CK8), keratin 18 (CK18), keratin 19 (CK19), vimentin, desmin and laminin, all of which contribute to the formation of the cytoskeleton in the rat mammary gland during pregnancy, lactation and involution. On days 7, 14 and 21 of pregnancy (pregnancy period), on day 7 post-delivery (lactation period) and on day 7 post-weaning (involution period), under ketamine hydrochloride (Ketalar-Pfizer) (90 mg/kg) anesthesia, two mammary glands were fully excised from the abdominal region. It was determined that CK8 showed moderate immunoreactions in the alveolar and ductal epithelia, connective tissue and vascular endothelium of the rat mammary gland throughout pregnancy. On the 7th day of pregnancy, CK18 expression was absent in the alveolar and ductal epithelia, but was observed weakly in some connective tissue cells. Throughout pregnancy, lactation and involution, the alveolar and ductal epithelia of the rat mammary gland were determined to be negative for CK19. Desmin expression predominated in the mammary myoepithelium and vasculature throughout all three of the investigated periods. While vimentin was not expressed in any of the mammary tissue components during pregnancy and lactation, its moderate expression was observed in the alveolar and ductal epithelia during involution. The involution period was also characterized by the vimentin negativity of the myoepithelium, stroma, fat cells and blood vessels of the mammary gland. Throughout all three periods, laminin expression was strong in the alveolar and ductal epithelia, stromal and myo-epithelial cells and blood vessels, and did not vary in strength between the investigated periods. These findings demonstrated that intermediate filaments showed cell- and tissue-specific expression patterns in the rat mammary gland under the effects of pregnancy, lactation and involution.
Abd El Rehim DM, Pinder SE, Paish CE, Bell J, Blamey RW, Robertson JF, Nicholson RI and Ellis IO (2004) Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 203: 661-671.
Ahmed M, Ffrench-Constant C (2016) Extracellular matrix regulation of stem cell behavior. Curr Stem Cell Rep 2: 197-206.
Alklay AA, Topaloğlu U, Celenk F, AYDIN N, Bayram B, Atalar Ö (2022) Expression of Cytokeratin 8, 18 and 19 in the Period of Late Lactation and Involution in Cow Mammary Gland. Kafkas Üniv Vet Fak Derg 28: 299-306.
Anand V, Dogra N, Singh S, Kumar SN, Jena MK, Malakar D, Dang AK, Mishra BP, Mukhopadhyay TK, Kaushik JK and Mohanty AK (2012) Establishment and characterization of a buffalo (Bubalus bubalis) mammary epithelial cell line. PloS One 7:e40469.
Anbazhagan R, Osin PP, Bartkova J, Nathan B, Lane EB, Gusterson BA (1998) The development of epithelial phenotypes in the human fetal and infant breast. J Pathol 184: 197-206.
Bach K, Pensa S, Grzelak M, Hadfield J, Adams DJ, Marioni JC and Khaled WT (2017) Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat Commun 8: 1-11.
Bartek J, Bartkova J, Taylor-Papadimitriou J (1990) Keratin 19 expression in the adult and developing human mammary gland. Histochem J 22: 537-544.
Bartek J, Taylor-Papadimitriou J, Miller N, Millis R (1985) Patterns of expression of keratin 19 as detected with monoclonal antibodies in human breast tissues and tumours. Int J Cancer 36: 299-306.
Boutinaud M, Herve L, Lollivier V (2015) Mammary epithelial cells isolated from milk are a valuable, non-invasive source of mammary transcripts. Front Genet 6: 323.
Böcker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P, Bürger H, Wai D, Ina Diallo R, Brandt B and Herbst H (2002) Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab İnvest 82: 737-746.
Buhler H, Schaller G (2005) Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo. Mol Cancer Res 3: 365-371.
Coulombe PA, Omary MB (2002) ‘Hard’and ‘soft’principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14: 110-122.
De Las Mulas JM, De Los Monteros AE, Carrasco L, Van Niel M, Fernández A (1995) Immunohistochemical distribution pattern of intermediate filament proteins in 50 feline neoplasms. Vet Pathol 32: 692-701.
Dontu G, Ince TA (2015) Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation. J Mammary Gland biol Neoplasia 20: 51-62.
Emerman JT, Vogl AW (1986) Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anat Rec 216: 405-415.
Franke WW, Schiller DL, Moll R, Winter S, Schmid E, Engelbrecht I, Denk H, Krepler R and Platzer B (1981) Diversity of cytokeratins: differentiation specific expression of cytokeratin polypeptides in epithelial cells and tissues. J Mol Biol 153: 933-959.
Goldfarb LG, Dalakas MC (2009) Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin İnvest 119:1806-1813.
Gudjonsson T, Rønnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115: 39-50.
Hellmén E, Lindgren A (1989) The expression of intermediate filaments in canine mammary glands and their tumors. Vet Pathol 26: 420-428.
Hohenester E, Yurchenco PD (2013) Laminins in basement membrane assembly. Cell Adh Migr 7: 56-63.
Keely PJ, Wu JE, Santoro SA (1995) The spatial and temporal expression of the α2β1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation 59: 1-13.
Kohnen G, Campbell S, Jeffers MD, Cameron IT (2000) Spatially regulated differentiation of endometrial vascular smooth muscle cells. Hum Reprod 15: 284-292.
Li H, Cherukuri P, Li N, Cowling V, Spinella M, Cole M, Godwin AK, Wells W and DiRenzo J (2007) Nestin is expressed in the basal/myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer res 67: 501-510.
Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T, Schuetz G, Mueller U, Streuli CH and Hynes NE (2005) β1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO j 24: 1942-1953.
Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, Yagita H, Lindeman GJ, Smyth GK and Visvader JE (2010) Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res 12: 1-14.
Madekurozwa MC (2013) An immunohistochemical study of the oviduct in the domestic fowl (Gallus domesticus). Anat Histol Embryol 42: 48-56.
Marettová E, Maretta M (2018) Immunohistochemical study of the stromal cells in the lactating bovine mammary gland. Folia Veterinaria 62: 29-35.
Mark C, van Deurs B, Petersen OW (1990) Regulation of vimentin expression in cultured human mammary epithelial cells. Differentiation 43: 146-156.
Mou Y, Wang Y, Li J, Lü S, Duan C, Du Z, Yang G, Chen W, Zhao S, Zhou J and Wang C (2013) Immunohistochemical characterization and functional identification of mammary gland telocytes in the self‐assembly of reconstituted breast cancer tissue in vitro. J Cell Mol Med 17: 65-75.
Mujyambere B, Jayaraj R, Suja S (2018) Cytokeratin 19 (CK19) as a marker for Epithelial Differentiation and Malignant Transformation: Its Clinical relevance in Diagnosis, Prognosis and Treatment response monitoring. IRE J 2: 51-61.
Ontsouka EC, Bertschi JS, Huang X, Lüthi M, Müller S, Albrecht C (2016) Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?. Biol Res 49: 1-11.
Owens DW, Lane EB (2003) The quest for the function of simple epithelial keratins. Bioessays 25: 748-758.
Petersen OW, Rønnov-Jessen L, Weaver VM, Bissell MJ (1998) Differentiation and cancer in the mammary gland: shedding light on an old dichotomy. Adv Cancer Res 75: 135-162.
Petre N, Rusu MC, Pop F, Jianu AM (2016) Telocytes of the mammary gland stroma. Folia morphol 75: 224-231.
Petridis IG, Fthenakis GC (2019) Mammary involution and relevant udder health management in sheep. Small Rumin Res 181: 66-75.
Peuhu E, Virtakoivu R, Mai A, Wärri A, Ivaska J (2017) Epithelial vimentin plays a functional role in mammary gland development. Development 144: 4103-4113.
Rangdaeng S, Truong LD (1991) Comparative immunohistochemical staining for desmin and muscle-specific actin: a study of 576 cases. Am J Clin Pathol 96: 32-45.
Raymond WA, Leong AS (1989) Vimentin – a new prognostic parameter in breast carcinoma? J Pathol 158: 107-114.
Russo J, Russo IH (2004) Development of the human breast. Maturitas 49: 2-15.
Sagsoz H, Ketani MA (2010) The role of estrogen receptors, erbB receptors, vascular endothelial growth factor and its receptors, and vascular endothelial growth inhibitor in the development of the rat mammary gland. Growth Factors 28: 379-393.
Sağsöz H, Saruhan BG, Erdoğan S (2017) Functional roles of angiogenic factors and receptors on non-endothelial cells in the oropharyngeal cavity of the chukar partridge (Alectoris chukar). Acta Zoologica 98: 44-55.
Santagata S, Thakkar A, Ergonul A, Wang B, Woo T, Hu R, Harrell JC, McNamara G, Schwede M, Culhane AC and Kindelberger D (2014) Taxonomy of breast cancer based on normal cell phenotype predicts outcome. J Clin İnvest 124: 859-870.
Smalley MJ, Titley J, O’Hare MJ (1998) Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In Vitro Cell Dev Biol Anim 34: 711-721.
Steinert PM, Jones JC, Goldman RD (1984) Intermediate filaments. J Cell Biol 99: 22-27.
Streuli CH, Schmidhauser C, Bailey N, Yurchenco P, Skubitz AP, Roskelley C and Bissell MJ (1995) Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol 129: 591-603.
Sun P, Yuan Y, Li A, Li B, Dai X (2010) Cytokeratin expression during mouse embryonic and early postnatal mammary gland development. Histochem Cell Biol 133: 213-221.
Timpl R, Brown JC (1994) The laminins. Matrix Biol 14: 275-281.
Villadsen R, Fridriksdottir AJ, Rønnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ and Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177: 87-101.
Warburton MJ, Ferns SA, Hughes CM, Rudland PS (1985) Characterization of rat mammary cell types in primary culture: lectins and antisera to basement membrane and intermediate filament proteins as indicators of cellular heterogeneity. J Cell Sci 79: 287-304.
Albasha MO, Azab AE (2016) Hepatorenal Protective Effects of Pomegranate (Punica granatum) Juice against Nicotine Induced Toxicity in Guinea Pigs. J Adv Biol Biotechnol 5: 1-13.
Ateyya H, Nader MA, Attia GM, El-Sherbeeny NA (2017) Influence of alpha-lipoic acid on nicotine-induced lung and liver damage in experimental rats. Can J Physiol Pharmacol 95: 492-500.
Azab AE, Albasha MO (2015) Simultaneous Administration of Aqueous Extract of Rosmarinus officinal with Nicotine Resulted in Prevention of Induced Hepatorenal Toxicity in Guinea Pigs. Amer J Biosci Bioeng 3: 80-86.
Bandyopadhyaya G, Sinha S, Chattopadhyay BD, Chakraborty A (2008) Protective role of curcumin against nicotine-induced genotoxicity on rat liver under restricted dietary protein. Eur J Pharmacol 588: 151-157.
Carpentieri A, Díaz de Barboza G, Areco V, Peralta López M, Tolosa de Talamoni N (2012) New perspectives in melatonin uses. Pharmacol Res 65: 437-444.
Chattopadhyay K, Mondal S, Chattopadhyay B, Ghosh S (2010) Ameliorative effect of sesame lignans on nicotine toxicity in rats. Food Chem Toxicol 48: 3215-3220.
Dailah HG (2022) Potential of Therapeutic Small Molecules in Apoptosis Regulation in the Treatment of Neurodegenerative Diseases: An Updated Review. Molecules 27: 7207.
Dasgupta P, Kinkade R, Joshi B, DeCook C, Haura E, Chellappan S (2006) Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA 103: 6332-6337.
Dey S, Nandi A, Das S, Sinha SK, Dey SK (2023) Nicotine and Chromium Co-exposure Lead to Hepatotoxicity in Male Albino Rats. J Stress Physiol Biochem 19: 24-34.
Durgun C, Aşır F (2023) Daidzein alleviated the pathologies in intestinal tissue against ischemia-reperfusion. Eur Rev Med Pharmacol Sci 27: 1487-1493.
El-Sherbeeny NA, Nader MA, Attia GM, Ateyya H (2016) Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways. Naunyn Schmiedebergs Arch Pharmacol 389: 1341-1351.
El-Sokkary GH, Cuzzocrea S, Reiter RJ (2007) Effect of chronic nicotine administration on the rat lung and liver: beneficial role of melatonin. Toxicology 239: 60-67.
Heusch WL, Maneckjee R (1998) Signalling pathways involved in nicotine regulation of apoptosis of human lung cancer cells. Carcinogenesis 19: 551-556.
Ivey R, Desai M, Green K, Sinha-Hikim I, Friedman TC, Sinha-Hikim AP (2014) Additive Effects of Nicotine and High-Fat Diet on Hepatocellular Apoptosis in Mice: Involvement of Caspase 2 and Inducible Nitric Oxide Synthase-Mediated Intrinsic Pathway Signaling Horm Metab Res 46: 568-573.
Jalili C, Salahshoor MR, Moradi MT, Ahookhash M, Taghadosi M, Sohrabi M (2017) Expression Changes of Apoptotic Genes in Tissues from Mice Exposed to Nicotine. Asian Pac J Cancer Prev 18: 239-244.
Kang SW, Park HJ, Ban JY, Chung JH, Chun GS, Cho JO (2011) Effects of nicotine on apoptosis in human gingival fibroblasts. Arch Oral Biol 56: 1091-1097.
Khalaf HA, Ghoneim FM, Arafat EA, Mahmoud EHM (2017) Histological effect of nicotine on adrenal zona fasciculata and the effect of grape seed extract with or without withdrawal of nicotine. J Microsc Ultrastruct 5: 123-131.
Kim HJ, Park KK, Chung WY, Lee SK, Kim KR (2017) Protective Effect of White-fleshed Peach (Prunus persica (L.) Batsch) on Chronic Nicotine-induced Toxicity. J Cancer Prev 22: 22-32.
Kurus M, Esrefoglu M, Sogutlu G, Atasever A (2009) Melatonin Prevents Cyclosporine-Induced Hepatotoxicity in Rats. Med Princ Pract 18: 407-410.
Liang YL, Zhang ZH, Liu XJ, Liu XQ, Tao L, Zhang YF, Wang H, Zhang C, Chen X, Xu DX (2012) Melatonin Protects against Apoptosis-Inducing Factor (AIF)-Dependent Cell Death during Acetaminophen-Induced Acute Liver Failure. PLoS One 7: e51911.
Mahmoud GS, Amer AS (2014) Protective Effects of Vitamin C against Nicotine-Induced Oxidative Damage of Rat Liver and Kidney. IOSR J Environ Sci Toxicol Food Technol 8: 50-63.
Mercan S, Eren B (2012) Protective role of melatonin supplementation against nicotine-induced liver damage in mouse. Toxicol Ind Health 29: 888-896.
Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 74: 609-619.
Othman MS, Fareid MA, Abdel Hameed RS, Abdel Moneim AE (2020) The Protective Effects of Melatonin on Aluminum-Induced Hepatotoxicity and Nephrotoxicity in Rats. Oxid Med Cell Longev 2020: 7375136.
Oztopuz O, Turkon H, Buyuk B, Coskun O, Sehitoglu MH, Ovali MA, Uzun M (2020) Melatonin ameliorates sodium valproate‑induced hepatotoxicity in rats. Mol Biol Rep 47: 317-325.
Saad AB, Rjeibi I, Brahmi N, Elaloui E, Zouari N (2020) Nicotine‑induced oxidative stress, testis injury, AChE inhibition and brain damage alleviated by Mentha spicata. Inflammopharmacology 28: 939-948.
Sainz RM, Mayo JC, Rodriguez C, Tan DX, Lopez-Burillo S, Reiter RJ (2003) Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 60: 1407-1426.
Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69: 217-245.
Tuñón MJ, San Miguel B, Crespo I, Jorquera F, Santamaría E, Alvarez M, Prieto J, González-Gallego J (2010) Melatonin attenuates apoptotic liver damage in fulminant hepatic failure induced by the rabbit hemorrhagic disease virus. J Pineal Res 50: 38-45.
Williams GT (1991) Programmed Cell Death: Apoptosis and Oncogenesis. Cell 65: 1097-1098.
Yang Z, He Y, Wang H, Zhang Q (2021) Protective effect of melatonin against chronic cadmium-induced hepatotoxicity by suppressing oxidative stress, inflammation, and apoptosis in mice. Ecotoxicol Environ Saf 228: 112947.
Zeng F, Li YC, Chen G, Zhang YK, Wang YK, Zhou SQ, Ma LN, Zhou JH, Huang YY, Zhu WY, Liu XG (2012) Nicotine inhibits cisplatin-induced apoptosis in NCI-H446 cells. Med Oncol 29: 364-373.
Zhang JJ, Meng X, Li Y, Zhou Y, Xu DP, Li S, Li HB (2017) Effects of Melatonin on Liver Injuries and Diseases. Int J Mol Sci 18: 673.
Diet has emerged as a key modulator of the gut microbiota, offering a potential strategy for disease prevention and management. This study investigated the effects of the Prescription Diet Gastrointestinal Biome (GB) on 7 healthy dogs and 16 dogs with chronic gastrointestinal diseases (GI dogs). Our investigation monitored changes in body weight and the Canine Inflammatory Bowel Disease Activity Index (CIBDAI) in 16 GI dogs fed a GB diet. Additionally, we assessed the gut microbiota using 16S rRNA sequencing pre- (GI dogs) and post- (healthy dogs and GI dogs) administration of GB diet. In dogs with GI, a significant improvement in the severity of CIBDAI was observed post-feeding with the GB diet compared to the period pre-feeding, without any changes in body weight. Primary changes in the gut microbiome were marked by significant differences between healthy and GI dogs. However, post-feeding the GB diet in GI dogs, resulted in an increase in Turicibacter and a decrease in Escherichia-Shigella linked with gastrointestinal inflammation. In conclusion, the GB diet appears to positively influence the gut microbiota and clinical outcomes in dogs with GI. Future studies should explore these relationships by focusing on the long-term effects of diet on the gut health and disease management.
Allen-Vercoe E, Strauss J, Chadee K (2011) Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes 2: 294-298.
AlShawaqfeh MK, Wajid B, Minamoto Y, Markel M, Lidbury JA, Steiner JM, Serpedin E, Suchodolski JS (2017) A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol Ecol 93: 11.
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232-236.
Bermingham EN, Maclean P, Thomas DG, Cave NJ, Young W (2017) Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 5: e3019.
Cassmann E, White R, Atherly T, Wang C, Sun Y, Khoda S, Mosher C, Ackermann M, Jergens A (2016) Alterations of the ileal and colonic mucosal microbiota in canine chronic enteropathies. PLoS One 11: e0147321.
Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, Hayward MR, Forslund SK, Schmidt TS, Descombes P, Jackson JR, Li Q, Bork P (2018) Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 6: 72.
Dandrieux JR, Mansfield CS (2019) Chronic Enteropathy In Canines: Prevalence, Impact And Management Strategies. Vet Med (Auckl) 10: 203-214.
Giaretta PR, Suchodolski JS, Jergens AE, Steiner JM, Lidbury JA, Cook AK, Hanifeh M, Spillmann T, Kilpinen S, Syrjä P, Rech RR (2020) Bacterial Biogeography of the Colon in Dogs With Chronic Inflammatory Enteropathy. Vet Pathol 57: 258-265.
Igarashi H, Ohno K, Horigome A, Fujiwara-Igarashi A, Kanemoto H, Fukushima K, Odamaki T, Tsujimoto H (2016) Fecal dysbiosis in miniature dachshunds with inflammatory colorectal polyps. Res Vet Sci 105: 41-46.
Ishii PE, Suchodolski JS, Duarte R, Pereira AR, Lidbury JA, Steiner JM, Giaretta PR (2022) Detection of invasive Escherichia coli in dogs with granulomatous colitis using immunohistochemistry. J Vet Diagn Invest 34: 990-994.
Jergens AE, Schreiner CA, Frank DE, Niyo Y, Ahrens FE, Eckersall PD, Benson TJ, Evans R (2003) A scoring index for disease activity in canine inflammatory bowel disease. J Vet Intern Med. 17: 291-297.
Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22: 292-298.
Leib MS (2000) Treatment of chronic idiopathic large-bowel diarrhea in dogs with a highly digestible diet and soluble fiber: a retrospective review of 37 cases. J Vet Intern Med 14: 27-32.
Minamoto Y, Otoni CC, Steelman SM, Büyükleblebici O, Steiner JM, Jergens AE, Suchodolski JS (2015) Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes. 6: 33-47.
Mondo E, Marliani G, Accorsi PA, Cocchi M, Di Leone A (2019) Role of gut microbiota in dog and cat’s health and diseases. Open Vet J 9: 253-258.
Mori A, Goto A, Kibe R, Oda H, Kataoka Y, Sako T (2019) Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. J Vet Med Sci 81: 1783-1790.
Ohkusa T, Sato N, Ogihara T, Morita K, Ogawa M, Okayasu I (2002) Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol 17: 849-853.
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57: 1-24.
Smith CR, Miller AD (2021) In situ hybridization to detect Escherichia coli in canine granulomatous colitis. J Vet Diagn Invest 36: 142-145.
Suchodolski JS, Markel ME, Garcia-Mazcorro JF, Unterer S, Heilmann RM, Dowd SE, Kachroo P, Ivanov I, Minamoto Y, Dillman EM, Steiner JM, Cook AK, Toresson L (2012) The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS One 7: e51907.
Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, An B, Shureiqi I, Toyota M, Kondo Y, Estécio MR, Issa JP (2014) Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 74: 1311-1318.
Walker D, Knuchel-Takano A, McCutchan A, Chang YM, Downes C, Miller S, Stevens K, Verheyen K, Phillips AD, Miah S, Turmaine M, Hibbert A, Steiner JM, Suchodolski JS, Mohan K, Eastwood J, Allenspach K, Smith K, Garden OA (2013) A comprehensive pathological survey of duodenal biopsies from dogs with diet-responsive chronic enteropathy. J Vet Intern Med 27: 862-874.
Wang K, Crevel RW, Mills EN (2022) Assessing protein digestibility in allergenicity risk assessment: A comparison of in silico and high throughput in vitro gastric digestion assays. Food Chem Toxicol 167: 113273.
Ahmed RF, Hikal MS, Abou-Taleb KA (2020) Biological, chemical and antioxidant activities of different types Kombucha. Ann Agric Sci 65: 35-41.
Aloulou A, Hamden K, Elloumi D, Ali MB, Hargafi K, Jaouadi B, Ayadi F, Elfeki A, Ammar E (2012) Hypoglycemic and antilipidemic properties of kombucha tea in alloxaninduced diabetic rats. BMC Complement Altern Med 12: 63.
Ardheniati M, Andriani MA, Amanto BS (2009) Fermentation kinetics in kombucha tea with tea kind variation based on its processing. Asian J Nat Prod Biochem 7: 48-55.
Bábíčková J, Tóthová Ľ, Lengyelová E, Bartoňová A, Hodosy J, Gardlík R, Celec P (2015) Sex Differences in Experimentally Induced Colitis in Mice: a Role for Estrogens. Inflammation 38: 1996-2006.
Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, Chang CM (2022) Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 27: 1326.
Banerjee D, Hassarajani SA, Maity B, Narayan G, Bandyopadhyay SK, Chattopadhyay S (2010) Comparative healing property of kombucha tea and black tea against indomethacin-induced gastric ulceration in mice: possible mechanism of action. Food Funct 1: 284-293.
Bedani R, Pauly‐Silveira ND, Roselino MN, de Valdez GF, Rossi EA (2010) Effect of fermented soy product on the fecal microbiota of rats fed on a beef‐based animal diet. J Sci Food Agric 90: 233-238.
Bengoa AA, Llamas MG, Iraporda C, Dueñas MT, Abraham AG, Garrote GL (2018) Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiol 69: 212-218.
Celiberto LS, Bedani R, Dejani NN, Ivo de Medeiros A, Sampaio Zuanon JA, Spolidorio LC, Tallarico Adorno MA, Amâncio Varesche MB, Carrilho Galvão F, Valentini SR, Font de Valdez G, Rossi EA, Cavallini DC (2017) Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis. PloS One 12: e0175935.
Cevikbas A, Yemni E, Ezzedenn FW, Yardimici T, Cevikbas U, Stohs SJ (1994) Antitumoural antibacterial and antifungal activities of kefir and kefir grain. Phytother Res 8: 78-82.
Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R (2016) Kombucha tea fermentation: Microbial and biochemical dynamics. Int J Food Microbiol 220: 63-72.
Chen Y, Michalak M, Agellon LB (2018) Importance of nutrients and nutrient metabolism on human health. Yale J Biol Med 91: 95.
Codex Alimentarius (2003) Codex-Stan CXS 243-2003; Codex Standard for Fermented Milks. Retrieved from http://www.fao.org/fao-who-codexalimentarius/en/. Accessed October 10, 2018.
De Filippis F, Troise AD, Vitaglione P, Ercolini D (2018) Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiol 73: 11-16.
de Oliveira Leite AM, Miguel MA, Peixoto RS, Rosado AS, Silva JT, Paschoalin VM (2013) Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage. Braz J Microbiol 44: 341-349.
Dimidi E, Cox SR, Rossi M, Whelan K (2019) Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 11: 1806.
Dinçoğlu AH, Ileri A, Rugji J (2023) Determination of bioactive properties of Capparis spinosa fruits and use in production of Tulum cheese. Emir J Food Agric 11: 1-12.
Dinçoğlu AH, Rugji J (2021) Use of rose oil in probiotic fermented whey as a functional food. J Food Sci Technol 58: 2705-2713.
Dipti P, Yogesh B, Kain AK, Pauline T, Anju B, Sairam M, Singh B, Mongia SS, Kumar GI, Selvamurthy W (2003) Lead induced oxidative stress: beneficial effects of Kombucha tea. Biomed Environ Sci 16: 276-282.
Erdogan FS, Ozarslan S, Guzel-Seydim ZB, Taş TK (2019) The effect of kefir produced from natural kefir grains on the intestinal microbial populations and antioxidant capacities of Balb/c mice. Food Res Int 115: 408-413.
Fels L, Jakob F, Vogel RF, Wefers D (2018) Structural characterization of the exopolysaccharides from water kefir. Carbohydr Polym 189: 296-303.
Green N, Miller T, Suskind D, Lee D (2019) A Review of Dietary Therapy for IBD and a Vision for the Future. Nutrients 11: 947.
Ji ZH, Xie WY, Zhao PS, Ren WZ, Jin HJ, Yuan B (2024) Kombucha polysaccharide alleviates DSS-induced colitis in mice by modulating the gut microbiota and remodeling metabolism pathways. Front Microbiomes, 3: 1341824.
Jayabalan R, Marimuthu S, Swaminathan K (2007) Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem 102: 392-398.
Kahraman HA, Tutun H, Kaya MM, Tutun S, Usluer MS, Rugji J, Yurdakul O (2021) Total phenolic content, antiradical, antimicrobial and antibiofilm properties of grape and apple vinegar. J VetBio Sci Tech, 6: 150-158.
Keyvan E, Rugji J, Dinçoğlu AH (2021) Probiotic Starter Cultures in Food Products. In: Mortazavian AM, Khorshidian N, Gomes da Crus (eds) In Vitro Functionality of Probiotics in Foods Edition:1. Chapter: 2 Publisher: Nova Science Publishers, pp 15-54.
Kim DH, Jeong D, Kang IB, Lim HW, Cho Y, Seo KH (2019) Modulation of the intestinal microbiota of dogs by kefir as a functional dairy product. J Dairy Sci 102: 3903-3911.
Klingberg TD, Axelsson L, Naterstad K, Elsser D, Budde BB (2005) Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages. Int J Food Microbiol 105: 419-431.
Laureys D, De Vuyst L (2014) Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl Environ Microbiol 80: 2564-2572.
Laureys D, Aerts M, Vandamme P, De Vuyst L (2018) Oxygen and diverse nutrients influence the water kefir fermentation process. Food Microbiol 73: 351-361.
Lynch KM, Wilkinson S, Daenen L, Arendt EK (2021) An update on water kefir: Microbiology, composition and production. Int J Food Microbiol 345: 109128.
Malbaša RV, Lončar ES, Vitas JS, Čanadanović-Brunet JM (2011) Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem 127: 1727-1731.
Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid EJ, Hutkins R (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44: 94-102.
Matei B, Salzat J, Diguta CF, Cornea CP, Luta G, Utoiu ER, Matei F (2018) Lactic acid bacteria strains isolated from Kombucha with potential probiotic effect. Rom Biotechnol Lett 23: 13592-13598.
Morshedi A, Dashti MH, Rafati A, Mosaddegh MH, Salami AS (2006) The chronic effect of Kombucha Tea consumption on weight loss in diabetic rats. J Med Plants 5: 17-22.
Özyurt H (2020) Changes in the content of total polyphenols and the antioxidant activity of different beverages obtained by Kombucha ‘tea fungus’. Int J Agric Environ Food Sci 4: 255-261.
Pakravan N, Kermanian F, Mahmoudi E (2019) Filtered Kombucha tea ameliorates the leaky gut syndrome in young and old mice model of colitis. Iran J Basic Med Sci 22: 1158-1165.
Qin HY, Xiao HT, Wu JC, Berman BM, Sung JJ, Bian ZX (2012) Key factors in developing the trinitrobenzene sulfonic acid-induced post-inflammatory irritable bowel syndrome model in rats. World J Gastroenterol 18: 2481-2492.
Randazzo W, Corona O, Guarcello R, Francesca N, Germanà MA, Erten H, Moschetti G, Settanni L (2016) Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiol 54: 40-51.
Rettedal EA, Altermann E, Roy NC, Dalziel JE (2019) The Effects of Unfermented and Fermented Cow and Sheep Milk on the Gut Microbiota. Front Microbiol 10: 458.
Rugji J, Çalışkan Z, Dinçoğlu AH, Özgür M, Erol Z, Özgür EB (2022) Prebiotic effect of D-allulose and β-glucan on whey beverage with Bifidobacterium animalis and investigation of some health effects of this functional beverage on rats. Food Sci Technol 42: e07022.
Rugji J, Dinçoğlu AH (2022) Biocontrol of Listeria monocytogenes by Bacillus coagulans GBI-30, 6086 in a synbiotic white brined cheese: An in vitro model study. LWT 169: 113982.
Senol A, Isler M, Sutcu R, Akin M, Cakir E, Ceyhan BM, Kockar MC (2015) Kefir treatment ameliorates dextran sulfate sodium-induced colitis in rats. World J Gastroenterol 21: 13020-13029.
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R (2023) An overview of fermentation in the food industry-looking back from a new perspective. Bioresour Bioprocess 10: 85.
Sniffen JC, McFarland LV, Evans CT, Goldstein EJ (2018) Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PloS One 13: e0209205.
Sun HB, Jing XS, Zhang GQ, Hai Y, Liu YZ, Wang DC (2019) Preliminary Study of Obese Patients with Chronic Obstructive Pulmonary Disease Suffering from Painful Osteoporotic Vertebral Compression Fracture Treated by Percutaneous Vertebroplasty in Improved Prone Position and Right Lateral Position. World Neurosurg, 130: e933-e940.
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P (2018) Understanding Kombucha Tea Fermentation: A Review. J Food Sci 83: 580-588.
Watawana MI, Jayawardena N, Gunawardhana CB, Waisundara VY (2015) Health, wellness, and safety aspects of the consumption of kombucha. J Chem 2015: 591869.
Williams S (1984) Official Methods of Analysis. Association of Official Analytical Chemists. 14th Edition, AOAC, Arlington.
Yan J, Zhou B, Xi Y, Huan H, Li M, Yu J, Zhu H, Dai Z, Ying S, Zhou W, Shi Z (2019) Fermented feed regulates growth performance and the cecal microbiota community in geese. Poult Sci 98: 4673-4684.
Yang ZW, Ji BP, Zhou F, Li B, Luo Y, Yang L, Li T (2009) Hypocholesterolaemic and antioxidant effects of kombucha tea in high-cholesterol fed mice. J Sci Food Agric 89: 150-156.
Yırtıcı Ü, Ergene A, Atalar MN, Adem Ş (2022) Phytochemical composition, antioxidant, enzyme inhibition, antimicrobial effects, and molecular docking studies of Centaurea sivasica. S Afr J Bot 144: 58-71.
Boyle DS, Lehman DA, Lillis L, Peterson D, Singhal M, Armes N, Parker M, Piepenburg O, Overbaugh J (2013) Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification. mBio 4: e00135-13.
En FX, Wei X, Jian L, Qin C (2008) Loop-mediated isothermal amplification establishment for detection of pseudorabies virus. J Virol Methods 151: 35-39.
Freuling C (2011) Pseudorabies virus in wild swine: a global perspective. Arch Virol 156: 1691-1705.
Gliddon HD, Frampton D, Munsamy V, Heaney J, Pataillot-Meakin T, Nastouli E, Pym AS, Steyn AJ, Pillay D, McKendry RA (2021) A Rapid Drug Resistance Genotyping Workflow for Mycobacterium tuberculosis, Using Targeted Isothermal Amplification and Nanopore Sequencing. Microbiol Spectr 9: e0061021.
He W, Auclert LZ, Zhai X, Wong G, Zhang C, Zhu H, Xing G, Wang S, He W, Li K, Wang L, Han GZ, Veit M, Zhou J, Su S (2019) Interspecies Transmission, Genetic Diversity, and Evolutionary Dynamics of Pseudorabies Virus. J Infect Dis 219: 1705-1715.
Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F (2019) SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 14: 2986-3012.
Li J, Macdonald J, von Stetten F (2018) Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 144: 31-67.
Lian K, Zhang M, Zhou L, Song Y, Wang G, Wang S (2020) First report of a pseudorabies-virus-infected wolf (Canis lupus) in China. Arch Virol 165: 459-462.
Liu Q, Kuang Y, Li Y, Guo H, Zhou C, Guo S, Tan C, Wu B, Chen H, Wang X (2022) The Epidemiology and Variation in Pseudorabies Virus: A Continuing Challenge to Pigs and Humans. Viruses 14: 1463.
Liu X, Zhou Y, Luo Y, Chen Y (2020) Effects of gE/gI deletions on the miRNA expression of PRV-infected PK-15 cells. Vir Gen 56: 461-471.
Ma B, Li J, Chen K, Yu X, Sun C, Zhang M (2020) Multiplex recombinase polymerase amplification assay for the simultaneous detection of three foodborne pathogens in seafood. Foods 9: 278.
Ma L, Lian K, Zhu M, Tang Y, Zhang M (2022) Visual detection of porcine epidemic diarrhea virus by recombinase polymerase amplification combined with lateral flow dipstrip. BMC Vet Res 18: 140.
Ma L, Shi H, Zhang M, Song Y, Zhang K, Cong F (2020) Establishment of a real-time recombinase polymerase amplification assay for the detection of avian reovirus. Front Vet Sci 7: 551350.
Ma L, Zeng F, Huang B, Zhu Y, Wu M, Xu F, Xiao L, Huang R, Ma J, Cong F, Guo P (2019) Point-of-care diagnostic assay for rapid detection of porcine deltacoronavirus using the recombinase polymerase amplification method. Transbound Emerg Dis 66: 1324-1331.
Ma X, Cui Y, Qiu Z, Zhang B, Cui S (2013) A nanoparticle-assisted PCR assay to improve the sensitivity for rapid detection and differentiation of wild-type pseudorabies virus and gene-deleted vaccine strains. J Virol Methods 193: 374-378.
Müller T, Hahn EC, Tottewitz F, Kramer M, Klupp BG, Mettenleiter TC, Sun Y, Liang W, Liu Q, Zhao T, Zhu H, Hua L, Peng Z, Tang X, Stratton CW, Zhou D, Tian Y, Chen H, Wu B (2018) Epidemiological and genetic characteristics of swine pseudorabies virus in mainland China between 2012 and 2017. PeerJ 6: e5785.
Tan L, Yao J, Yang Y, Luo W, Yuan X, Yang L, Wang A (2021) Current Status and Challenge of Pseudorabies Virus Infection in China. Virol Sin 36: 588-607.
Tan M, Liao C, Liang L, Yi X, Zhou Z, Wei G (2022) Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front Cell Infect Microbiol 12: 1019071.
Teoh BT, Sam SS, Tan KK, Danlami MB, Shu MH, Johari J, Hooi PS, Brooks D, Piepenburg O, Nentwich O, Wilder-Smith A, Franco L, Tenorio A, AbuBakar S (2015) Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification. J Clin Microbiol 53: 830-837.
Tu F, Zhang Y, Xu S, Yang X, Zhou L, Ge X, Han J, Guo X, Yang H (2022) Detection of pseudorabies virus with a real-time recombinase-aided amplification assay. Transbound Emerg Dis 69: 2266-2274.
Wang H, Hou P, Zhao G, Yu L, Gao YW, He H (2018) Development and evaluation of serotype-specific recombinase polymerase amplification combined with lateral flow dipstick assays for the diagnosis of foot-and-mouth disease virus serotype A, O and Asia1. BMC Vet Res 14: 359.
Wongsamart R, Bhattarakasol P, Chaiwongkot A, Wongsawaeng D, Okada PA, Palaga T, Leelahavanichkul A, Khovidhunkit W, Dean D, Somboonna N (2023) Multiplex recombinase polymerase amplification for high-risk and low-risk type HPV detection, as potential local use in single tube. Sci Rep 13:829.
Yang H, Han H, Wang H, Cui Y, Liu H, Ding S (2019) A case of human viral encephalitis caused by pseudorabies virus infection in China. Front Neurol 10: 534.
Yang X, Zhang X, Wang Y, Shen H, Jiang G, Dong J, Zhao P, Gao S (2020) A real-time recombinase polymerase amplification method for rapid detection of vibrio vulnificus in seafood. Front Microbiol 11: 586981.
Yang Y, Qin X, Wang G, Zhang Y, Shang Y, Zhang Z (2015) Development of a fluorescent probe-based recombinase polymerase amplification assay for rapid detection of Orf virus. Virol J 12: 206.
Zhang CF, Cui SJ, Zhu C (2010) Loop-mediated isothermal amplification for rapid detection and differentiation of wild-type pseudorabies and gene-deleted virus vaccines. J Virol Methods 169: 239-243.
Zheng HH, Fu PF, Chen HY, Wang ZY (2022) Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 14: 1638.
Zhou J, Li S, Wang X, Zou M, Gao S (2017) Bartha-k61 vaccine protects growing pigs against challenge with an emerging variant pseudorabies virus. Vaccine 35: 1161-1166.
Adewoyin M, Ibrahim M, Roszaman R, Isa MLM, Alewi NAM, Rafa AAA, Anuar MNN (2017) Male infertility: the effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases 5: 9.
Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 29: 10-49.
Ahmed MA, Hamid AK, Tayawi HM (2018) Silymarin effect as an antioxidant to improve damages induced by CCl4 on some characteristics of male rats reproductive system. Tikrit J Pure Sci 23: 60-65.
Alves MG, Martins AD, Rato L, Moreira PI, Socorro S, Oliveira PF (2013) Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochim Biophys Acta 1832: 626- 35.
Alyethodi RR, Sirohi AS, Karthik S, Tyagi S, Perumal P, Singh U, Sharma A, Kundu A (2021) Role of seminal MDA, ROS, and antioxidants in cryopreservation and their kinetics under the influence of ejaculatory abstinence in bovine semen. Cryobiology 98: 187-193.
De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11: 1-12.
Darzynkiewicz Z (1990) Differential staining of DNA and RNA in intact cells and isolated cell nuclei with acridine orange. Methods Cell Biol 33: 285- 98.
Fatehi D, Mohammadi M, Shekarchi B, Shabani A, Seify M, Rostamzadeh A (2018) Radioprotective effects of Silymarin on the sperm parameters of NMRI mice irradiated with γ-rays. J Photochem Photobiol B 178: 489- 95.
Guimaraes ET, Cruz GS, Almeida TF, Souza BS, Kaneto CM, Vasconcelos JF, Santos WL, Santos RR, Villarreal CF, Soares MB (2013) Transplantation of stem cells obtained from murine dental pulp improves pancreatic damage, renal function, and painful diabetic neuropathy in diabetic type 1 mouse model. Cell Transplant 22: 2345-2354.
Held T, Barakat AZ, Mohamed BA, Paprotta I, Meinhardt A, Engel W, Adham IM (2011) Heat-shock protein HSPA4 is required for progression of spermatogenesis. Reproduction 142:133- 144.
Hosen B, Islam R, Begum F, Kabir Y, Howlader MZ (2015) Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Iran J Reprod Med 13: 525-532.
Huang SY, Tam MF, Hsu YT, Lin JH, Chen HH, Chuang CK, Chen MY, King YT, Lee WC. (2005) Developmental changes of heat-shock proteins in porcine testis by a proteomic analysis. Theriogenology 64: 1940- 55.
Hüttl M, Markova I, Miklankova D, Zapletalova I, Poruba M, Racova Z, Vecera R, Malinska H (2021) The beneficial additive effect of silymarin in metformin therapy of liver steatosis in a pre-diabetic model. Pharmaceutic 14: 45-55.
Kaludercic N, Di Lisa F (2020) Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med 7: 12.
Kozakova M, Morizzo C, Goncalves I, Natali A, Nilsson J, Palombo C (2019) Cardiovascular organ damage in type 2 diabetes mellitus: the role of lipids and inflammation. Cardiovasc Diabetol 18: 61.
Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
Minami Y, Kawasaki H, Miyata Y, Suzuki K, Yahara I (1991) Analysis of native forms and isoform compositions of the mouse 90-kDa heat shock protein, HSP90. J Biol Chem 266: 10099-103.
Mirzaei E, Sabetian G, Masjedi M, Heidari R, Mirjalili M, Dehghanian A, Vazin A (2021) The effect of silymarin on liver enzymes and antioxidant status in trauma patients in the intensive care unit: a randomized double blinded placebo-controlled clinical trial. Clin Exp Hepatol 7: 149-155.
Niehaus WG Jr, Samuelsson B (1968) Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6: 126-130.
Omolaoye Temidayo S, Plessis Stefan S (2018) Diabetes mellitus and male infertility. Asian Pac J Reprod 7: 6-14.
Palani A, Alahmar A (2020) Impact of oxidative stress on semen parameters in normozoospermic infertile men: a case – control study. Afr J Urol 26:50.
Pant N, Srivastava SP (2003) Testicular and spermatotoxic effects of quinaphos in rats. J Appl Toxicol 23: 271-274.
Pourheydar B, Azarm F, Farjah G, Karimipour M, Pourheydar M (2021) Effect of silymarin and metformin on the sperm parameters and histopathological changes of testes in diabetic rats: An experimental study. Int J Reprod Biomed 19: 1091-1104.
Purandhar K, Jena PK, Prajapati B, Rajput P, Seshadri S (2014) Understanding the Role of Heat Shock Protein Isoforms in Male Fertility, Aging and Apoptosis. World J Mens Health 32: 123-132.
Farjah MH, Farahpour MR (2020) Efficacy of topical platelet-rich plasma and chitosan co-administration on Candida albicans-infected partial thickness burn wound healing. Burns 46: 1889-1895.
Simas JN, Mendes TB, Fischer LW,Vendramini V, Miraglia SM (2021) Resveratrol improves sperm DNA quality and reproductive capacity in type 1 diabetes. Andrology 9: 384- 99.
Chongde S, Yilong L, Liuhuan Zh, Gina R.R, Jianbo X, Huamin J, Xian L, Kunsong Ch (2021) Anti diabetic effects of natural antioxidants from fruits. Trends Food Sci Technol 117: 3-14.
Surai PF (2015) Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants 4: 204-47.
Terada K, Yomogida K, Imai T, Kiyonari H, Takeda N, Kadomatsu T, Yano M, Aizawa S, Mori M (2005) A type I DnaJ homolog, DjA1, regulates androgen receptor signaling and spermatogenesis. EMBO J 24: 611-622.
Tuorkey MJ, El-Desouki NI, Kamel RA (2015) Cytoprotective effect of silymarin against diabetes-induced cardiomyocyte apoptosis in diabetic rats. Biomed Environ Sci 28: 36-43.
Vlassara H, Uribarri J (2014) Advanced Glycation end Products (AGE) and Diabetes: Cause, Effect, or Both?. Curr Diab Rep 14: 453.
Witkin SS, Kanninen TT, Sisti G. The Role of Hsp70 in the Regulation of Autophagy in Gametogenesis, Pregnancy, and Parturition. Adv Anat Embryol Cell Biol 222:117-127.
Xiao F, Gao F, Zhou S,Wang L (2020) The therapeutic effects of silymarin for patients with glucose/lipid metabolic dysfunction: A meta-analysis. Medicine 99:40.
Yaman T, Uyar A, Kaya MS, Keles ÖF , Uslu BA , Yener Z (2018) Protective effects of silymarin on methotrexate-induced damages in rat testes. Braz J Pharm Sci 54: e17529.
Zuo D, Subjeck J, Wang X (2016) Unfolding the role of large heat shock proteins: new insights and therapeutic implications. Front Immunol 7: 75.
The aim of this study was to develop a rapid, sensitive and highly specific TaqMan quantitative real-time polymerase chain reaction PCR (qPCR) assay for porcine circovirus-like virus (PCLV). The primers and probe were designed based on the conserved regions of the PCLV ORF4 gene. The assay has a good detection performance (y = -3.3257x + 1.482, R2 = 0.9905), with a limit of detection of 10 copies, which was 100 times more sensitive than conventional PCR (cPCR). No cross-reactivity was observed with other common viruses. The intra- and inter-assay coefficients of variation were less than 1.25%. 36 fecal samples were analyzed using this method, detecting a positivity rate of 8.33% (3/36) that was higher than the cPCR detected. In summary, the established assay for PCLV detection has high specificity, sensitivity, and reproducibility and can be used as a tool for clinical diagnosis and epidemiological investigation.
Guo Z, He Q, Tang C, Zhang B, Yue H (2018) Identification and genomic characterization of a novel CRESS DNA virus from a calf with severe hemorrhagic enteritis in China. Virus Res 255: 141-146.
Hu X, Chen Z, Song D, Li Y, Ding Z, Wu X, You H, Wu H (2022) Frequency detection of porcine circovirus-like viruses in pigs with porcine respiratory disease. Vet Microbiol 275: 109581.
Ji C, Zeng M, Wei Y, Lv X, Sun Y, Ma J (2023) Genetic characterization of four strains porcine circovirus-like viruses in pigs with diarrhea in Hunan Province of China. Front Microbiology 14: 1126707.
Liu X, Zhang X, Xu G, Wang Z, Shen H, Lian K, Lin Y, Zheng J, Liang P, Zhang L, Liu Y, Song C (2021) Emergence of porcine circovirus-like viruses associated with porcine diarrheal disease in China. Transbound and Emerg Dis 68: 3167-3173.
Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E (2011) The fecal virome of pigs on a high-density farm. J V 85: 11697-11708.
Sun W, Wang W, Cao L, Zheng M, Zhuang X, Zhang H, Yu N, Tian M, Lu H, Jin N (2021) Genetic characterization of three porcine circovirus-like viruses in pigs with diarrhoea in China. Transbound and Emerg Dis 68: 289-295.
Yang K, Zhang M, Liu Q, Cao Y, Zhang W, Liang Y, Song X, Ji K, Shao Y, Qi K, Tu J (2021) Epidemiology and Evolution of Emerging Porcine Circovirus-like Viruses in Pigs with Hemorrhagic Dysentery and Diarrhea Symptoms in Central China from 2018 to 2021. Viruses 13: 2282.
Zhao L, Rosario K, Breitbart M, Duffy S (2019) Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv virus Res 103: 71-133.
Zhang L, Zhang X, Xu G, Wang L, Liu X, Zhang P, Wang S, Liang T, Wang Z, Liu Y, Xu Z, Li Z, Huang G, Song C (2022) Establishment of a Real-Time Quantitative PCR Assay for Porcine Circovirus-Like Virus and the First Evidence of Its Spread to Hainan and Jiangxi Provinces of China. Front Vet Sci 9: 853761.
Czaja K, Kaleczyc J, Pidsudko Z, Franke-Radowiecka A, Łakomy M (2001) Distribution of efferent neurons innervating the oviduct in the pig. Folia Morphol 60: 243-8.
Dudek A, Sienkiewicz W, Lepiarczyk E, Kaleczyc J (2024) Immunohistochemical properties of motoneurons supplying the porcine trapezius muscle. Pol J Vet Sci 27: 75-84.
Evans HE, Sack WO (1973) Prenatal Development of Domestic and Laboratory Mammals: Growth Curves, External Features and Selected References. Anat Histol Embryol 2: 11-45.
Franke-Radowiecka A (2020) Paracervical ganglion in the female pig during prenatal development: morphology and immunohistochemical characteristics. Histol Histopathol 35: 1363-1377.
Franke-Radowiecka A, Prozorowska E, Zalecki M, Jackowiak H, Kaleczyc J (2019) Innervation of internal female genital organs in the pig during prenatal development. J Anat 235: 1007-1017.
Keast JR, Smith-Anttila CJ, Osborne PB (2015) Developing a functional urinary bladder: a neuronal context. Front Cell Dev Biol 3: 53.
Nogalski Z, Barański W (2023) Pelvic dimensions and occurrence of dystocia in Black-and-White and Holstein-Friesian heifers. Pol J Vet Sci 26: 687-693.
Patten BM (1948) Embryology of the pig, 3rd ed., Home Farm Books Publication.
Podlasz P, Wasowicz K (2008) Neurochemical characteristics of paracervical ganglion in the pig. Vet Med 53: 135-146.
Salogni C, Lazzaro M, Giacomini E, Giovannini S, Zanoni M, Giuliani M, Ruggeri J, Pozzi P, Pasquali P, Boniotti MB, Alborali GL (2016) Infectious agents identified in aborted swine fetuses in a high-density breeding area: a three-year study. J Vet Diagn Invest 28: 550-554.
Sienkiewicz W, Klimczuk M, Gulbinowicz-Gowkielewicz M, Lepiarczyk E, Kaleczyc J (2022) Immunohistochemical characterization of nerve elements in porcine intrinsic laryngeal ganglia. Pol J Vet Sci 25: 325-334.
Szostak B, Stasiak A, Gonet M (2015) Post-mortem evaluation of sows’ reproductive organs – a valuable source of information about reproductive problems on pig farms (in Polish). Przegląd hodowlany 5: 25-27.
Wiater J (2018) Will genetic engineering methods make xenotransplantation a reality? Transgenic pigs as potential organ donors for humans (in Polish). Kosmos 320: 541-553.
Wiese CB, Deal KK, Ireland SJ, Cantrell VA, Sounthard-Smith EM (2017) Migration pathways of sacral neural crest during development of lower urogenital tract innervation. Dev Biol 429: 356-369.
Young HM, Cane KN, Anderson CR (2011) Development of the autonomic nervous system: A comparative view. Auton Neurosci 165: 10-27.
The aim of the study was to find out whether carriers of new genetic defect Muscle Weakness (MW) occur in the population of Polish Holstein-Friesian bulls. Fifty bulls were included in the analysis. Bulls were selected as having in the pedigree known carrier of MW. All bulls were diagnosed by DNA sequencing of CACNA1S gene containing single nucleotide substitution (rs3423414874) responsible for 97% of MW cases. Among 50 bulls, 19 MW carriers were found. Our results show that causal mutation for MW is already transmitted to Polish Holstein-Friesian cattle which is sufficient ground to take practical action in order to avoid further spreading of mutation causing MW.
Al-Khudhair A, VanRaden PM, Null DJ, Neupane M, McClure MC, Dechow CD (2024) New mutation within a common haplotype is associated with calf muscle weakness in Holsteins. J Dairy Sci 107: 3768-3779.
Czarnik U, Grzybowski G, Kamiński S, Prusak B, Zabolewicz T (2007) Effectiveness of a program aimed at the elimination of BLAD-carrier bulls from the Polish Holstein-Friesian cattle. J Appl Genet 48: 375-377.
Dechow CD, Frye E, Maunsell FP (2022) Identification of a putative haplotype associated with recumbency in Holstein calves. JDS Commun 3:412-415.
Kamiński S (2023) Eradication of carriers of Complex Vertebral Malformation (CVM) and Brachyspina in Polish Holstein-Friesian bulls. Pol J Vet Sci 26:315-317.
OMIA:002819-9913: Muscle weakness, CACNA1S-related in Bos taurus (taurine cattle), https://omia.org, accessed 15 April 2024.
Ambrose DJ, Radke B, Pitney PA, Goonewardene LA (2007) Evaluation of early conception factor lateral flow test to determine nonpregnancy in dairy cattle. Can Vet J 48: 831.
Anderson H (2008) Chapter 21 – Clinical reproductive endocrinology. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical Biochemistry of Domestic Animals. Sixth Edition. Academic Press, pp 635-662.
Antanaitis R, Malašauskienė D, Televičius M, Juozaitienė V, Žilinskas H, Baumgartner W (2020) Dynamic Changes in Progesterone Concentration in Cows’ Milk Determined by the At-Line Milk Analysis System Herd NavigatorTM. Sensors (Basel) 20: 5020.
Azmi Z, Desem MI, Purba HHS, Endrawati D, Rachmawati F, Kusumaningtyas E, Subekti DT (2020) Evaluation of sulfuric acid, barium chloride, and seed germination assay methods as early pregnancy detection instruments in cattle. J Ked Hewan 2: 29-33.
Balhara AK, Gupta M, Singh S, Mohanty AK, Singh I (2013) Early pregnancy diagnosis in bovines: Current status and future directions. Scientific World Journal 2013: 958540
Barbato O, Menchetti L, Brecchia G, Barile VL (2022) Using Pregnancy-Associated Glycoproteins (PAGs) to Improve Reproductive Management: From Dairy Cows to Other Dairy Livestock. Animals (Basel) 12: 2033.
Bastan A, Ozenc E, Macun H, Acar D, Gungor O (2007) Use of early conception factor test for determining pregnancy and embryonic mortality status of dairy cows. Med Weter 63: 670-673.
Blavy P, Friggens NC, Nielsen KR, Christensen JM, Derks M (2018) Estimating probability of insemination success using milk progesterone measurements. J Dairy Sci 101: 1648-1660.
Bond RL, Midla LT, Gordon ED, Welker FH, Masterson MA, Mathys DA, Mollenkopf DF (2019) Effect of student transrectal palpation on early pregnancy loss in dairy cattle. J Dairy Sci 102: 9236-9240.
Bonev G (2021) Application of P4 rapid test and exogenous source of progesterone in prevention of early embryonic death in dairy cows. Agric Sci Technol 13: 24-27.
Bowers S, Gandy S, Anderson B, Ryan P, Willard S (2009) Assessment of pregnancy in the late-gestation mare using digital infrared thermography. Theriogenology 72: 372-377.
Cavanagh AC (1996) Identification of early pregnancy factor as chaperonin 10: implications for understanding its role. Rev Reprod 1: 28-32.
Chapeau C, King GJ, Bamberg E (1993) Fecal estrogens in one primate and several ungulate species during various reproductive stages. Anim Reprod Sci 34: 167-175.
Chen W, Nemoto T, Kobayashi T, Saito T, Kasuya E, Honda Y (2000) ECG and heart rate detection of prenatal cattle foetus using adaptive digital filtering. Annual International Conference of the IEEE Engineering in Medicine and Biology – Proceedings 2: 962-965.
Cordoba MC, Sartori R, Fricke PM (2001) Assessment of a Commercially Available Early Conception Factor (ECF) Test for Determining Pregnancy Status of Dairy Cattle. J Dairy Sci 84: 1884-1889.
Dalmaso de Melo G, Mello BP, Ferreira CA, Souto Godoy Filho CA, Rocha CC, Silva AG, Reese ST, Madureira EH, Pohler KG, Pugliesi G (2020) Applied use of interferon-tau stimulated genes expression in polymorphonuclear cells to detect pregnancy compared to other early predictors in beef cattle. Theriogenology 152: 94-105.
Dana OI, Ghaidan MT, Mukhtar RH, Dyary HO (2020) Comparison of a Barium Chloride Test with ELISA for Pregnancy Detection in Cows. J Vet Res 64: 567-571.
Domino M, Borowska M, Kozłowska N, Zdrojkowski Ł, Jasiński T, Smyth G, Maśko M (2022) Advances in thermal image analysis for the detection of pregnancy in horses using infrared thermography. Sensors 22: 191.
Dufour P, Frisée V, Rigaux G, Brutinel F, Egyptien S, Bossaert P, Deleersnyder J, Deleuze S, Peeters S, Le Goff C, Ponthier J, Cavalier E (2024) Analysis of progesterone and estronesulfate in feces of American Bison using liquid chromatography coupled to mass spectrometry: Technical validation and correlation with blood levels. Domest Anim Endocrinol 86: 106819.
Eddy AL, Van Hoogmoed LM, Snyder JR (2001) The Role of Thermography in the Management of Equine Lameness. Vet J 162: 172-181.
Esslemont RJ, Kossaibati MA, Allcock J (2001) Economics of fertility in dairy cows. BSAP Occas Publ 26: 19-29.
Faustini M, Battocchio M, Vigo D, Prandi A, Veronesi MC, Comin A, Cairoli F (2007) Pregnancy diagnosis in dairy cows by whey progesterone analysis: an ROC approach. Theriogenology 67: 1386-1392.
Fedorova T, Brandlová K, Lukešová D (2015) Application of noninvasive pregnancy diagnosis in bactrian camels (camelus bactrianus) using cuboni reaction and barium chloride test. J Zoo Wildl Med 46: 355-358.
Ferguson JD (1996) Diet, production and reproduction in dairy cows. Anim Feed Sci Technol 59: 173-184.
Forde N, Lonergan P (2017) Interferon-tau and fertility in ruminants. Reproduction 154: 33-43.
Franco OJ, Drost M, Thatcher MJ, Shille VM, Thatcher WW (1987) Fetal survival in the cow after pregnancy diagnosis by palpation per rectum. Theriogenology 27: 631-644.
Gajewski Z, Petrajtis-Gołobów M, Melo de Sousa N, Beckers JF, Pawliński B, Wehrend A (2014) Comparison of accuracy of pregnancy-associated glycoprotein (PAG) concentration in blood and milk for early pregnancy diagnosis in cows. Schweiz Arch Tierheilkd 156: 585-590
Gandy B, Tucker W, Ryan P, Williams A, Tucker A, Moore A, Godfrey R, Willard S (2001) Evaluation of the early conception factor (ECF) test for the detection of nonpregnancy in dairy cattle. Theriogenology 56: 637-647.
Gargiulo GD, Shephard RW, Tapson J, McEwan AL, Bifulco P, Cesarelli M, Jin C, Al-Ani A, Wang N, van Schaik A (2012) Pregnancy detection and monitoring in cattle via combined foetus electrocardiogram and phonocardiogram signal processing. BMC Vet Res 8: 1-10.
Ghaidan MT, Dana OI, Dyary HO (2019) Accuracy of bovine pregnancy-associated glycoproteins (bPAGs) in the diagnosis of pregnancy: a comparative study of three pregnancy diagnostic methods. Pol J Vet Sci 22: 769-775.
Gowan EW, Etches RJ, Bryden C, King GJ (1982) Factors Affecting Accuracy of Pregnancy Diagnosis in Cattle. J Dairy Sci 65: 1294-1302.
Grant A (1958) Cervical hostility; incidence, diagnosis, and prognosis. Fertil Steril 9: 321-333.
Green JC, Okamura CS, Poock SE, Lucy MC (2010) Measurement of interferon-tau (IFN-tau) stimulated gene expression in blood leukocytes for pregnancy diagnosis within 18-20d after insemination in dairy cattle. Anim Reprod Sci 121: 24-33.
Hafez B, Hafez ESE (2000) Anatomy of Female Reproduction. In: Balado D (ed) Reproduction in farm animals, Lippincott Williams & Wilkins, Philadelphia, p 26.
Hamon M, Fleet IR, Holdsworth RJ, Heap RB (1981) The Time of Detection of Oestrone Sulphate in Milk and the Diagnosis of Pregnancy in Cows. Br Vet J 137: 71-77.
Haque MH, Narayan S, Islam MS, Akter M, Hasan MM, Islam R, Rashid MB (2023) A simple, inexpensive and portable on-farm test for pregnancy diagnosis and ovary status in cows via chemical analysis of urine. Biochem Biophys Res Commun 677: 113-118.
Heap RB, Holdsworth RJ, Gadsby JE, Laing JA, Walters DE (1976) Pregnancy Diagnosis in the Cow from Milk Progesterone Concentration. Br Vet J 132: 445-464.
Henderson KM, Camberis M, Simmons MH, Starrs WJ, Hardie AH (1994) Application of enzymeimmunoassay to measure oestrone sulphate concentrations in cows’ milk during pregnancy. J Steroid Biochem Mol Biol 50: 189-196.
Hoffmann B, Goes De Pinho T, Schuler G (1997) Determination of free and conjugated oestrogens in peripheral blood plasma, feces and urine of cattle throughout pregnancy. Exp Clin Endocrinol Diabetes 105: 296-303.
Hoffman B, Wagner WC, Hixon JE, Bahr J (1979) Observations concerning the functional status of the corpus luteum and the placenta around parturition in the cow. Anim Reprod Sci 2: 253-266.
Holtz W, Niggemeyer H (2019) Reliable identification of pregnant dairy cows by double milk progesterone analysis. Livest Sci 228: 38-41.
Hussain Z, Khan S, Yousaf A, Ahmad N, Rafiullah R, Sadia H, Munibullah M (2016) Pregnancy diagnosis in dairy animals through inhibition of seed germination. J Appl Agric Biotech 1: 78-83.
Jaśkowski JM, Kaczmarowski M, Kulus J, Jaśkowski BM, Herudzińska M, Gehrke M (2019) Rectal palpation for pregnancy in cows: A relic or an alternative to modern diagnostic methods. Med Weter 75: 259-264.
Ježková A, Stádník L, Vacek M, Louda F (2008) Factors affecting the cervical mucus crystallization, the sperm survival in cervical mucus, and pregnancy rates of holstein cows. J. Cent. Eur. Agric 9: 377-384.
Kanagawa H, To K, Kawata K (1966) Fetal electrocardiogram in dairy cattle. V. Diagnostic application for fetal mummification. Jpn J Vet Res 14: 114-116.
Kanagawa H, Too K, Kawata K, Ono H (1965) Fetal electrocardiogram in dairy cattle. II. Diagnosis for twin pregnancy. Jpn J Vet Res 13: 111-120.
Karakuş O, Kaçar C, Kuru M, Kaya S, Demir MC, Arı UÇ, Zonturlu AK, Öztürkler Y (2020) Efficacy of a commercial test kit to determine early pregnancy in cows using whole blood and blood serum. Trop Anim Health Prod 53: 28.
Kiracofe GH, Wright JM, Schalles RR, Ruder CA, Parish S, Sasser RG (1993) Pregnancy-specific protein B in serum of postpartum beef cows. J Anim Sci 71: 2199-2205.
Kovács L, Tozsér J, Szenci O, Póti P, Kézér FL, Ruff F, Gábriel-Tozsér G, Hoffmann D, Bakony M, Jurkovich V (2014) Cardiac responses to palpation per rectum in lactating and nonlactating dairy cows. J Dairy Sci 97: 6955-6963.
Kowalczyk A, Czerniawska-Piątkowska E, Wrzecińska M (2021) The Importance of Interferon-Tau in the Diagnosis of Pregnancy. Biomed Res Int 2021: 9915814.
Kubátová A, Fedorova T, Skálová I, Hyniová L (2016) Non-invasive Pregnancy Diagnosis from Urine by the Cuboni Reaction and the Barium Chloride Test in Donkeys (Equus asinus) and Alpacas (Vicugna pacos). Pol J Vet Sci 19: 477-484.
Kumar Bharti M, Jacob N (2019) Laboratory and imaging techniques for pregnancy diagnosis in animals. J Entomol Zool Stud 7: 639-647.
Laing JA, Heap RB (1971) The Concentration of Progesterone in the Milk of Cows During the Reproductive Cycle. Br Vet J 127: 19-22.
Lalrintluanga K, Dutta M (2009) Pregnancy diagnosis in swine from urine using barium chloride test. Indian J Anim Res 43: 114-116.
Lavon Y, Friedman S, Shwimmer A, Falk R (2022) Performing Early Pregnancy Tests in Milk and Their Effect on Cow Welfare and Reproductive Performance Compared to Rectal Pregnancy Tests 40 to 45 Days Post Insemination. Dairy 3: 465-473.
Lobago F, Bekana M, Gustafsson H, Beckers JF, Yohannes G, Aster Y, Kindahl H (2009) Serum Profiles of Pregnancy-Associated Glycoprotein, Oestrone Sulphate and Progesterone During Gestation and Some Factors Influencing the Profiles in Ethiopian Borana and Crossbred Cattle. Reprod Domest Anim 44: 685-692.
López-Gatius F, Garbayo JM, Santolaria P, Yániz J, Ayad A, de Sousa NM, Beckers JF (2007) Milk production correlates negatively with plasma levels of pregnancy-associated glycoprotein (PAG) during the early fetal period in high producing dairy cows with live fetuses. Domest Anim Endocrinol 32: 29-42.
López-Gatius F, Miró J, Sebastián I, Ibarz A, Labèrnia J (1993) Rheological properties of the anterior vaginal fluid from superovulated dairy heifers at estrus. Theriogenology 40: 167-180.
Mann GE, Lamming GE, Robinson RS, Wathes DC (1999) The regulation of interferon-tau production and uterine hormone receptors during early pregnancy. J Reprod Fertil Suppl 54: 317-328.
McCafferty DJ (2007) The value of infrared thermography for research on mammals: previous applications and future directions. Mammal Rev 37: 207-223.
Mehmedi B, Gecaj RM, Kastrati T, Heltai M, Turmalaj L (2021) Practical application of the progesterone P4 rapid test in cow’s milk for early pregnancy detection. Veterinarska Stanica 52: x-x.
Morton H, Rolfe BE, Cavanagh AC (1987) Ovum factor and early pregnancy factor. Curr Top Dev Biol 23: 73-92.
Moussafir Z, Allai L, El Khalil K, Essamadi A, El Amiri B (2018) Could a bovine pregnancy rapid test be an alternative to a commercial pregnancy-associated glycoprotein ELISA test in dairy cattle? Anim Reprod Sci 192: 78-83.
Nakao T, Sato T, Moriyoshi M, Kawata K (1994) Plasma Cortisol Response in Dairy Cows to Vaginoscopy, Genital Palpation per Rectum and Artificial Insemination. Zentralbl Veterinarmed A 41: 16-21.
Nancarrow CD, Wallace ALC, Grewal AS (1981) The early pregnancy factor of sheep and cattle. J Reprod Fertil Suppl 1: 191-199.
Narayana Swamy M, Ravikumar C, Kalmath GP (2010) Seed Germination inhibition test for pregnancy detection in Malnad Gidda Cows. Vet World 3: 107-108.
Noonan JJ, Schultze AB, Ellington EF (1975) Changes in Bovine Cervical and Vaginal Mucus during the Estrous Cycle and Early Pregnancy. J Anim Sci 41: 1084-1089.
Okunlola OO, Olorunnisomo OA, Alalade JA, Oyinlola OO, Amusa HO, Adebisi I A, Emiola CB (2019) Maize seed germination inhibition test for pregnancy diagnosis in Zebu cows. Niger J Anim Prod 46: 101-107.
Olğaç KT, Yazlık MO, Kaya U, Özkan H, Tırpan MB (2023) The thermographic monitoring in early pregnancy detection in Holstein cows and heifers. Anim Reprod Sci 256: 107317.
Oliveira JF, Henkes LE, Ashley RL, Purcell SH, Smirnova NP, Veeramachaneni DN, Anthony RV, Hansen TR (2008) Expression of Interferon (IFN)-Stimulated Genes in Extrauterine Tissues during Early Pregnancy in Sheep Is the Consequence of Endocrine IFN-tau Release from the Uterine Vein. Endocrinology 149: 1252-1259.
Otava G, Cernescu C, Mircu C, Igna V (2007) Pregnancy diagnosis in cow using progesterone measurements. Lucrări Ştiinłifice Medicină Veterinară 11: 95-98.
Panjaitan B, Siregar TN, Hafizuddin, Sayuti A, Adam M, Armansyah T, Syafruddin (2021) Comparison of the effectiveness of pregnancy diagnosis in Aceh cow through measurement of interferon-tau and progesterone concentrations. Biodiversitas 22: 1712-1716.
Pardo-Carmona B, Moyano MR, Fernández-Palacios R, Pérez-Marín CC (2010) Saliva crystallisation as a means of determining optimal mating time in bitches. J Small Anim Pract 51: 437-442.
Pennington JA, Schultz LH, Hoffman WF (1985) Comparison of Pregnancy Diagnosis by Milk Progesterone on Day 21 and Day 24 Postbreeding: Field Study in Dairy Cattle. J Dairy Sci 68: 2740-2745.
Pope GS, Majzlik I, Ball PJ, Leaver JD (1976) Use of Progesterone Concentrations in Plasma and Milk in the Diagnosis of Pregnancy in Domestic Cattle. Br Vet J 132: 497-506.
Prakash BS, Madan ML (1993) Influence of gestation on oestrone sulphate concentration in milk of zebu and crossbred cows and Murrah buffaloes. Trap Anim Health Prod 25: 94-100.
Radigonda VL, Pereira GR, da Cruz Favaro P, Barca Júnior FA, Borges MH, Galdioli VH, Júnior CK (2017) Infrared thermography relationship between the temperature of the vulvar skin, ovarian activity, and pregnancy rates in Braford cows. Trop Anim Health Prod 49: 1787-1791.
Rai M, Mishra A, Amin A (2018) Study of pregnancy diagnosis by germination inhibition method in cattle in field conditions. Int J Chem Stud 6: 340-341.
Rao SV, Veena T (2009) Comparison of seed germination test with urine barium chloride test and milk copper sulphate test for efficacy to detect pregnancy in cows. Indian J Anim Res 43: 124-126.
Ricci A, Carvalho PD, Amundson MC, Fourdraine RH, Vincenti L, Fricke PM (2015) Factors associated with pregnancy-associated glycoprotein (PAG) levels in plasma and milk of Holstein cows during early pregnancy and their effect on the accuracy of pregnancy diagnosis. J Dairy Sci 98: 2502-2514.
Rine MZ, Hossain MG, Akter S, Tarif AM, Bari FY, Alam MG (2014) Evaluation of Seed Germination Inhibition Test for Early Detection of Pregnancy in Cross Breed Dairy Cattle in Bangladesh Evaluation of multiple ovulation and embryo transfer technique in the improved production system in Black Bengal goat in Bangladesh. J Vet Adv 4: 343-349.
Roberts JN, Byrem TM, Grooms DL (2015) Application of an ELISA Milk Pregnancy Test in Beef Cows. Reprod Domest Anim 50: 651-658.
Roberts RM, Ezashi T, Rosenfel CS, Ealy AD, Kubisch HM (2003) Evolution of the interferon tau genes and their promoters, and maternal-trophoblast interactions in control of their expression. Reprod Suppl 61: 239-251.
Robertson HA, King GJ (1979) Conjugated and unconjugated oestrogens in fetal and maternal fluids of the cow throughout pregnancy. J Reprod Fertil 55: 463-470.
Santos JEP, Ribeiro ES, (2018) Impact of animal health on reproduction of dairy cows. Anim Reprod 11: 254-269.
Sasser RG, Ruder CA (1987) Detection of early pregnancy in domestic ruminants. J Reprod Fertil Suppl 34: 261-271.
Sasser RG, Ruder CA, Ivani KA, Butler JE, Hamilton WC (1986) Detection of Pregnancy by Radioimmunoassay of a Novel Pregnancy-Specific Protein in Serum of Cows and a Profile of Serum Concentrations during Gestation. Biol Reprod 35: 936-942.
Setiawati EN, Saleh DM, Armelia V, Nugroho AP (2021) Accuracy of Various Doses of Sulphate Acid (H2SO4) in early Pregnancy Detection in Friesian Holstein Dairy Cows. IJFAF 5: 18-24.
Shah KD, Nakao T, Kubota H (2006) Plasma estrone sulphate (E1S) and estradiol-17beta (E2β) profiles during pregnancy and their relationship with the relaxation of sacrosciatic ligament, and prediction of calving time in Holstein-Friesian cattle. Anim Reprod Sci 95: 38-53.
Shemesh M, Ayalon N, Lindner HR (1973) Early Pregnancy Diagnosis Based upon Plasma Progesterone Levels in the Cow and Ewe. J Anim Sci 36: 726-729.
Silva E, Sterry RA, Kolb D, Mathialagan N, McGrath MF, Ballam JM, Fricke PM (2007) Accuracy of a pregnancy-associated glycoprotein ELISA to determine pregnancy status of lactating dairy cows twenty-seven days after timed artificial insemination. J Dairy Sci 90: 4612-4622.
Skalova I, Fedorova T, Brandlova K (2013) Saliva Crystallization in Cattle: New Possibility for Early Pregnancy Diagnosis? Agric Trop Subtrop 46: 102-104.
Skálová I, Fedorova T, Baranyiová E (2017) Seed germination test as a potential pregnancy diagnosis method for domestic cattle. Bulg J Agric Sci 23: 453-461.
Spencer TE, Bazer FW (1996) Ovine interferon tau suppresses transcription of the estrogen receptor and oxytocin receptor genes in the ovine endometrium. Endocrinology 137: 1144-1147.
Steffen S, Mansfeld R, Ibenthal S, Grunert E (1995) The use of an externally derived fetal electrocardiogram in obstetrical diagnosis in cattle for the evaluation of fetal vitality. Schweiz Archiv Tierheilkd 137: 432-437.
Szenci O, Beckers JF, Humblot P, Sulon J, Sasser G, Taverne MA, Varga J, Baltusen R, Schekk G (1998) Comparison of ultrasonography, bovine pregnancy-specific protein B, and bovine pregnancy-associated glycoprotein 1 tests for pregnancy detection in dairy cows. Theriogenology 50: 77-88.
Thompson IM, Cerri RL, Kim IH, Green JA, Santos JE, Thatcher WW (2010) Effects of resynchronization programs on pregnancy per artificial insemination, progesterone, and pregnancy-associated glycoproteins in plasma of lactating dairy cows. J Dairy Sci 93: 4006-4018.
Threlfall WR (1994) Immunosuppressive early pregnancy factor (ISEPF) determination for pregnancy diagnosis in dairy cows. Theriogenology 41: 317.
Too K, Kanagawa H, Kawata K (1965) Fetal electrocardiogram in dairy cattle. I. Fundamental studies. Jpn J Vet Res 13: 71-84.
Veena T, Narendranath R (1993) An ancient Eygptian pregnancy test extended to cattle. Curr Sci 65: 989-990.
Veenhuizen EL, Erb RE, Gorski J (1960) Quantitative Determination of Free Estrone, Estradiol 17-β, and Estradiol 17-α in Bovine Fetal Cotyledons. J Dairy Sci 43: 270-277.
Whisnant CS, Pagels LA, Daves MG (2001) Effectiveness of a Commercial Early Conception Factor Test for Use in Cattle. ProfessAnim Sci17: 51-53.
Xiao CW, Murphy BD, Sirois J, Goff AK (1999) Down-Regulation of Oxytocin-Induced Cyclooxygenase-2 and Prostaglandin F Synthase Expression by Interferon-tau in Bovine Endometrial Cells. Biol Reprod 60: 656-663.
Yang CJ, Wu LS, Tseng CM, Chao MJ, Chen PC, Lin JH (2003) Urinary Estrone Sulfate for Monitoring Pregnancy of Dairy Cows. Asian-Aust J Anim Sci 16: 1254-1260.
Yazlik MO, Olgac KT, Çolakoğlu HE, Kaya U, Yildirim MM, Bas B (2020) Effects of vitamin B1, vitamin E and selenium on pregnancy and blood metabolites profile during non-breeding season and early prediction of pregnancy by thermographic monitoring in Merino ewes. Indian J Anim Sci 90:1368-1372.
Zaied AA, Bierschwal CJ, Elmore RG, Youngquist RS, Sharp AJ, Garverick HA (1979) Concentrations of progesterone in milk as a monitor of early pregnancy diagnosis in dairy cows. Theriogenology 12: 3-11.
Zoli AP, Guilbault LA, Delahaut P, Ortiz WB, Beckers JF (1992) Radioimmunoassay of a bovine pregnancy-associated glycoprotein in serum: its application for pregnancy diagnosis. Biol Reprod 46: 83-92.