Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Non-intentionally doped GaSb epilayers were grown by molecular beam epitaxy (MBE) on highly mismatched semi-insulating GaAs substrate (001) with 2 offcut towards (110). The effects of substrate temperature and the Sb/Ga flux ratio on the crystalline quality, surface morphology and electrical properties were investigated by Nomarski optical microscopy, X-ray diffraction (XRD) and Hall measurements, respectively. Besides, differential Hall was used to investigate the hole concentration behaviour along the GaSb epilayer. It is found that the crystal quality, electrical properties and surface morphology are markedly dependent on the growth temperature and the group V/III flux ratio. Under the optimized parameters, we demonstrate a low hole concentration at very low growth temperature. Unfortunately, the layers grown at low temperature are characterized by wide FWHM and low Hall mobility.

Go to article

Authors and Affiliations

D. Benyahia
Łukasz Kubiszyn
ORCID: ORCID
Krystian Michalczewski
ORCID: ORCID
A. Kębłowski
Piotr Martyniuk
ORCID: ORCID
J. Piotrowski
A. Rogalski
Download PDF Download RIS Download Bibtex

Abstract

Numerical analysis of the dark current (Jd) in the type-II superlattice (T2SL) barrier (nBn) detector operated at high temperatures was presented. Theoretical calculations were compared with the experimental results for the nBn detector with the absorber and contact layers in an InAs/InAsSb superlattice separated AlAsSb barrier. Detector structure was grown using MBE technique on a GaAs substrate. The k p model was used to determine the first electron band and the first heavy and light hole bands in T2SL, as well as to calculate the absorption coefficient. The paper presents the effect of the additional hole barrier on electrical and optical parameters of the nBn structure. According to the principle of the nBn detector operation, the electrons barrier is to prevent the current flow from the contact layer to the absorber, while the holes barrier should be low enough to ensure the flow of optically generated carriers. The barrier height in the valence band (VB) was adjusted by changing the electron affinity of a ternary AlAsSb material. Results of numerical calculations similar to the experimental data were obtained, assuming the presence of a high barrier in VB which, at the same time, lowered the detector current responsivity.

Go to article

Bibliography

  1. Aytac, Y. et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infra-red InAs/InAsSb superlattices. Appl. Phys. Lett. 105, 022107 (2014). https://doi.org/10.1063/1.4890578
  2. Olson, B. et al. Identification of dominant recombination mecha-nisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys. Appl. Phys. Lett. 103, 052106 (2013). https://doi.org/10.1063/1.4817400
  3. White, M., 1983. Infrared Detectors. U.S. Patent 4,679,063.
  4. Klipstein, P., 2003. Depletionless photodiode with suppressed dark current and method for producing the same. U.S. Patent 7,795,640.
  5. Maimon, S. & Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  6. Ting, D. Z.-Y. et al. Chapter 1 - Type-II Superlattice Infrared Detectors. in Advances in Infrared Photodetectors (eds. Gunapala, S. D., Rhiger, D. R. & Jagadish, C.) vol. 84 1–57 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-381337-4.00001-2
  7. Benyahia, D. et al. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy. Opto-Electron. Rev. 24, 40–45 (2016).https://doi.org/10.1515/oere-2016-0007
  8. Benyahia, D. et al. Molecular beam epitaxial growth and characterization of InAs layers on GaAs (001) substrate. Opt. Quant. Electron. 48, 428 (2016). https://doi.org/10.1007/s11082-016-0698-4
  9. Vurgaftman, I., Meyer, J. & Ram-Mohan, L. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). https://doi.org/10.1063/1.1368156
  10. Birner, S. Modelling of semiconductor nanostruc¬tures and semiconductor-electrolyte interfaces. Ph.D. dissertation (Universität München, Germany, 2011).
  11. Chuang, Sh. L. Physics of optoelectronic devices. (Wiley, New York, 1995).
  12. Van de Walle, C. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989). https://doi.org/10.1103/PhysRevB.39.1871
  13. Kopytko, M. et al. Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate. Proceedings 27, 37 (2019), https://doi.org/10.3390/proceedings2019027037
  14. Hazbun, R. et al. Theoretical study of the effects of strain balancing on the bandgap of dilute nitride InGaSbN/InAs superlattices on GaSb substrates. Infrared Phys. Technol. 69, 211–217 (2015). https://doi.org/10.1016/j.infrared.2015.01.023
  15. Livneh, Y. et al. k-p model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices. Phys. Rev. B 86, 235311 (2012). https://doi.org/10.1103/PhysRevB.86.235311
  16. Yu, P. & Cardona, M. Fundamentals of semicon-ductors: Physics and materials properties, 4th edn. (Springer, Heidelberg, 2010).
  17. Adachi, S. Properties of group – IV, III-V and II-VI Semicon-ductors. (Wiley, London, 2005).
  18. Manyk, T. et al. Method of electron affinity evalua¬tion for the type-2 InAs/InAs1-xSbx superlattice. J. Mater. Sci. 55, 5135–5144 (2020). https://doi.org/10.1007/s10853-020-04347-6
Go to article

Authors and Affiliations

Małgorzata Kopytko
1
ORCID: ORCID
Emilia Gomółka
1
ORCID: ORCID
Tetiana Manyk
1
ORCID: ORCID
Krystian Michalczewski
2
ORCID: ORCID
Łukasz Kubiszyn
2
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  2. Vigo System S.A., Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

The quantum efficiency of an InAs/InAsSb type-II superlattice (T2SL) high operating temperature (HOT) long-wavelength infrared (LWIR) photodetector may be significantly improved by integrating a two-dimensional subwavelength hole array in a metallic film (2DSHA) with the detector heterostructure. The role of the metallic grating is to couple incident radiation into surface plasmon polariton (SPP) modes whose field overlaps the absorber region. Plasmon-enhanced infrared photodetectors have been recently demonstrated and are the subject of intensive research. Optical modelling of the three-dimensional detector structure with subwavelength metallic components is challenging, especially since its operation depends on evanescent wave coupling. Our modelling approach combines the 3D finite-difference time-domain method (FDTD) and the rigorous coupled wave analysis (RCWA) with a proposed adaptive data-point selection for calculation time reduction. We demonstrate that the 2DSHA-based detector supports SPPs in the Sommerfeld-Zenneck regime and waveguide modes that both enhance absorption in the active layer.
Go to article

Authors and Affiliations

Andrzej Janaszek
1 2
ORCID: ORCID
Piotr Wróbel
2
ORCID: ORCID
Maciej Dems
3
ORCID: ORCID
Omer Ceylan
4
ORCID: ORCID
Yasar Gurbuz
4
ORCID: ORCID
Łukasz Kubiszyn
5
ORCID: ORCID
Józef Piotrowski
6
ORCID: ORCID
Rafał Kotyński
2
ORCID: ORCID

  1. Janaszek, Andrzej :VIGO Photonics, Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  2. Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  3. Institute of Physics, Lodz University of Technology, Wólczańska 217/221, 93-005 Łódź, Poland
  4. Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
  5. Kubiszyn, Łukasz :VIGO Photonics, Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  6. Piotrowski, Józef :VIGO Photonics, Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of diameter mapping for circular-symmetric disturbance of homogeneity of epitaxially grown InAs (100) layers on GaAs substrates. The set of acceptors (beryllium) doped InAs epilayers was studied in order to evaluate the impact of Be doping on the 2-inch InAs-on-GaAs wafers quality. During the initial identification of size and shape of the circular pattern, non-destructive optical techniques were used, showing a 100% difference in average roughness between the wafer centre and its outer part. On the other hand, no volumetric (bulk) differences are detectable using Raman spectroscopy and high-resolution X-ray diffraction. The correlation between Be doping level and circular defect pattern surface area has been found.
Go to article

Authors and Affiliations

Jacek Boguski
1
ORCID: ORCID
Jarosław Wróbel
1
ORCID: ORCID
Sebastian Złotnik
1
ORCID: ORCID
Bogusław Budner
2
Malwina Liszewska
2
Łukasz Kubiszyn
3
ORCID: ORCID
Paweł P. Michałowski
2
Łukasz Ciura
4
Paweł Moszczyński
5
ORCID: ORCID
Sebastian Odrzywolski
1
Bartłomiej Jankiewicz
2
Jerzy Wróbel
1 6
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  2. Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  3. VIGO Photonics S.A., Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  4. Department of Electronics Fundamentals, Rzeszów University of Technology, W. Pola 12, 35-959 Rzeszów, Poland
  5. Institute of Computer and Information Systems, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  6. Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

This page uses 'cookies'. Learn more