Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2022 | 48 | 2

Download PDF Download RIS Download Bibtex

Abstract

Based on China’s provincial panel data from 2009 to 2019, this paper empirically tests and analyzes the effects of industrial agglomeration and other important economic variables on industrial green technology innovation efficiency from the perspective of spatial statistical analysis. The results show that the efficiency of China’s industrial green innovation has not changed much during the study period, exhibiting an obvious polarization phenomenon. Moreover, the improvement of the degree of industrial agglomeration is conducive to the regional green innovation efficiency level. This means that industrial agglomeration produces effective environmental and innovation benefits. In addition, the influence coefficient of enterprise-scale is negative, indicating that for Chinese industrial enterprises, the enlargement of the production scale weakens the promotion effect of R&D activities. The influence coefficient of human capital is negative, mainly because the direct effect has a small and positive value, while the indirect effect (spillover effect) has a negative and large value, indicating that the spillover effect of human capital between regions in China is deficient.
Go to article

Bibliography

  1. Anselin, L. (1988) Spatial econometrics: Methods and models, Dordrecht : Kluwer Academic.
  2. Burchart-Korol, D.. & Zawartka, P. (2019). Environmental life cycle assessment of septic tanks in urban wastewater system - a case study for Poland, Archives of Environmental Protection, 45, 4, pp. 68–77. DOI: DOI 10.24425/aep.2019.130243
  3. Charnes, A, Cooper, W.W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operation Research, 2 , pp. 429-444.
  4. Chen, S.Y. & Golley, J. (2014). Green productivity growth in China’s industrial economy, Energy Economics, 44, 7, pp. 89-98. DOI: 10.1016/j.eneco.2014.04.002
  5. Copper, W.W., Li, S., Seiford, L.M., et al. (2001) Sensitivity and stability analysis in DEA: Some recent development, Journal of Productivity Analysis, 15, pp. 217-246.
  6. Duranton, G. & Puga, D. (1999). Diversity and specialisation in cities: Why, where and when does it matter?, Urban Studies, 37, 3, 533–555.
  7. Haken, H. (1971). From the Laser to Synergetics: A Scientific Biography of the Early Years, Springer.
  8. Hirte, G. & Tscharaktsciew, S. (2013). The optimal subsidy on electric vehicles in German metropolitan areas:a spatial general equilibrium analysis, Energy economics, 40, pp. 515-528. DOI: 10.1016/j.eneco.2013.08.001
  9. Hu AG, Zhou SJ. (2014) Green development: Functional definition, mechanism analysis and development strategy, China population, resources and environment, 24, 1, pp.14-20.
  10. Humphrey J, Schmitz H. (1996) The triple C approach to local industrial policy, World Development, 24, pp. 1859-1877.
  11. J Adu, M Kumarasamy. (2020) Mathematical model development for non-point source in-stream pollutant transport, Archives of Environmental Protection, 46, 2, pp. 91–99. DOI: DOI 10.24425/aep.2020.133479
  12. Jeon C,Lee J,Shin J. (2015) Optimal subsidy estimation method using system dynamics and the real option model:photovoltaic technology case, Applied energy, 142, pp. 33-43. DOI: 10.1016/j.apenergy.2014.12.067
  13. Ji ZH, Yu W, Zhang P. (2020) Spatial agglomeration of high-tech industries, technological innovation and regional green development efficiency: Empirical evidence based on PVAR model, Macroeconomics, 9, pp. 92-102.
  14. Jiang L. (2016) The choice of spatial econometric models reconsidered in empirical studies, Journal of Statistics and Information, 31, pp. 10-16.
  15. Krugman P. (1991b) Geography and trade, MIT press.
  16. Krugman P. (1992) A dynamic spatial model, National Bureau of Economic Research.
  17. Krugman P. (1993) First nature,second nature,and metropolitan location, Journal of regional science, 33, pp. 129-144. DOI: 10.1111/j.1467-9787.1993.tb00217.x
  18. Krugman P.(1991a) Increasing returns and economic geography, Journal of Political Economy, 99, pp. 483-499.
  19. Kuznetsov A V, Kuznetsova O V. (2019) The success and failure of Russian SEZs: Some policy lessons, Transnational Corporations Journal, United Nations Conference on Trade and Development.
  20. Li XL. (2014) An empirical analysis based on marketization, industrial agglomeration and environmental pollution, Statistical Research, 8, pp. 39-45. https://tjyj.stats.gov.cn/EN/Y2014/V31/I8/39
  21. Liu B. (2012) Research on the development strategy of agglomeration of producer service industry in Shanghai, East China Economic Management, 26, 1, pp. 1-3.
  22. Liu J, Cao YR, Wu HT. (2020) The influence of industrial co-agglomeration on regional green innovation, Forum on Science and Technology in China, 4, pp. 42-50.
  23. Liu, S., Zhu, Y. & Du, K. (2017) The impact of industrial agglomeration on industrial pollutant emission: evidence from China under New Normal, Clean Technologies and Environmental Policy, 19, pp. 2327-2334. DOI: 10.1007/s10098-017-1407-0
  24. Luo LW, Liang SR. (2017) The spatial effect of international R&D capital technology spillovers on the efficiency of China's green technology innovation, Business Management Journal, 39, pp. 21-33.
  25. M G Lukaszewska, Z Pawlak, G Sinicyn. (2021) Spatial distribution of the water exchange through river cross-section – measurements and the numerical model, Archives of Environmental Protection, 47,1, pp. 69–79. DOI 10.24425/aep.2021.136450
  26. Marshall, A. (1920). Industry and trade: A study of industrial technique and business organization, London: Mac Millan
  27. MJ Wiatkowski, B Wiatkowska, U Gruss, C Rosik-Dulewska, D Chopek (2021) Assessment of the possibility of implementing small retention reservoirs in terms of the need to increase water resources, Archives of Environmental Protection, 47,1, pp. 80–100. DOI 10.24425/aep.2021.136451
  28. Newman C, Page J M. (2017) Industrial clusters: The case for special economic zones in Africa, Wider Working Paper Series wp-2017-15, World Institute for Development Economic Research (UNU-WIDER).
  29. P M Bochenska, W Rzeznik. (2019) Ammonia emission from livestock production in Poland and its regional diversity, in the years 2005–2017, Archives of Environmental Protection, 45, 4, pp. 114–121. DOI 10.24425/aep.2019.130247
  30. P Tomczyk, M Wiatkowski. (2020) Shaping changes in the ecological status of watercourses within barrages with hydropower schemes – literature review, Archives of Environmental Protection, 46, 4, pp. 78–94. DOI 10.24425/aep.2020.135767
  31. P Wilk, A Grabarczyk. (2018) The effect of selected inviolable flow characteristics on the results of environmental analysis using the example of river absorption capacity, Archives of Environmental Protection, 44, 2, pp. 14–25. DOI 10.24425/119702
  32. Pohl, A. & Kostecki, M.. (2020). Spatial distribution, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in water and bottom sediments of the anthropogenic lymnic ecosystems under conditions of diversified anthropopressure, Archives of Environmental Protection, 46 ,4, pp. 104–120. DOI 10.24425/aep.2020.135769
  33. Porter M.E. (1998) Cluster and the new economics of competition, Harvard Business Review, 76, pp. 11-12.
  34. Qu YF, Yu CQ. (2021) Diversification and specialization of industrial agglomeration and the efficiency of enterprise green technology innovation, Ecological Economy, 37, pp. 61-67.
  35. Shen N, Peng H. (2021) Can industrial agglomeration achieve the emission-reduction effect? Socio-Economic Planning Sciences, 75, pp. 100867. DOI: 10.1016/j.seps.2020.100867
  36. Silvia C, Krause R M. (2016) Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: an agent-based model, Energy policy, 96, pp.105-118. DOI: 10.1016/j.enpol.2016.05.039
  37. Storper M. (1992) The limits to globalization: technology districts and international trade, Economic Geography, 68, pp. 60-93.
  38. Sun H X,et al. (2019) Evolutionary game of the green investment in a two-echelon supply chain under a government subsidy mechanism, Journal of cleaner production, 235, pp.1315-1326. DOI: 10.1016/j.jclepro.2019.06.329
  39. Sun XH, Wang Y. (2014) The influence of firm size on productivity and its difference-Based on the empirical test of industrial firms in China, China Industrial Economics, 5, pp. 57-69.
  40. Turkina E, Van Assche A. (2018) Global connectedness and local innovation in industrial clusters, Journal of International Business Studies, 49, pp. 706-728. DOI: 10.1057/s41267-018-0153-9
  41. Wang H, Miao Z, Wang SQ. (2015) Spatial spillover, industrial agglomeration effect and industrial green innovation efficiency, Forum on Science and Technology in China, 12, pp. 33-38.
  42. Wang MK, Liu YP, Li T. (2019) The differential impact of tourism industrial agglomeration on environmental pollution: Empirical evidence from 287 cities, Reform, 2, pp. 102-114.
  43. Wang XH, Feng YC. (2018) The influence of environmental regulation on China’s circular economy performance, 28, 7, pp. 136-146.
  44. Wu MR, Ma J. (2016) Measurement on regional ecological efficiency in China and analysis on its influencing factors: Based on DEA-Tobit two-stage method, Journal of Technology Economics, 35, 3, pp. 75-80+122.
  45. Wu MR, Zhao M and Wu ZD (2020) An evaluation and variation analysis of sustainable development capacity in different regions of China, International Journal of Environmental Technology and Management, 23, 5-6, pp. 397-413.
  46. Wu MR, Zhao M. (2016) Research on Chinese different regional sustainable development capacity and its spatial differentiation, Shanghai Journal of Economics, 10, pp. 84-92.
  47. Wu MR, Zhao M. (2017) The effect of linking and promotion of marketization on industrial agglomeration and industrial ecology efficiency: Based on an analysis to eastern China region, Journal of Nanjing Tech University (Social Science Edition), 16, pp. 115-123.
  48. Wu MR. (2021) Measurement and spatial statistical analysis of green science and technology innovation efficiency among Chinese provinces, Environmental and Ecological Statistics, 28, pp. 423–444. DOI: 10.1007/s10651-021-00491-7
  49. Xiao ZL, Du XY. (2017) Measurement and convergence in development performance of China’s high-tech industry, Science Technology and Society, 22, pp. 212-235. DOI: 10.1177/0971721817702280
  50. Yang Z, Song T, Chahine. (2016) Spatial representations and policy implications of industrial co-agglomerations, a case study of Beijing, Habitat International, 55, pp. 32-45. DOI: 10.1016/j.habitatint.2016.02.007
  51. Zhang K, Dou JM. (2016) Do Industrial Agglomeration Reduce Emissions? Journal of Huazhong University of Science and Technology (Social Science Edition), 30, 4, pp. 99-109.
  52. Zhao HL, Lin BQ. (2019) Will agglomeration improve the energy efficiency in China’s textile industry: Evidence and policy implications, Applied Energy, 237, pp. 326-337. DOI: DOI: 10.1016/j.apenergy.2018.12.068
Go to article

Authors and Affiliations

Mingran Wu
Weidong Huang

Download PDF Download RIS Download Bibtex

Abstract

Soil contamination with hydrocarbons represents a worldwide problem, especially for oil-rich countries.Soil contamination becomes inevitable due to different accidents, aboveground spills, and leakage, threatening the fauna and flora. The purpose of this study is to remediate One-year aged contaminated soil with crude oil (23490 mg/kg) using the fluidization technique in a laboratory-scale column. Free water and surfactant solutions were used for washing at different operating conditions. The efficiency of the method was evaluated by the calculation of the total petroleum hydrocarbons (TPH) removal ratio. Without the addition of surfactant, the cleaning operation was not sufficiently efficient, especially at room temperature where the removal ratio was only about 18%. Raising the liquid temperature leads to some improvement where the TPH removal ratio reached 49% at 50°C. With the use of solutions containing Sodium Laureth Sulfate (SLES) as a surfactant, an important enhancement of removal ratio was noted, along with an important reduction in operating time, washing solution volume, and energy consumption. The use of alternatively working/stopping operation mode contributes to the improvement of efficiency. TPH removal ratios up to 99% were obtained under some favorable conditions. This research shows encouraging results for expanding towards the industrial level with clean and sustainable resources
Go to article

Bibliography

  1. Arrar, J., Chekir, N. & Bentahar, F. (2007) Treatment of diesel fuel contaminated soil in jet-fluidized bed. Biochem. Eng. J. 37:131–138. DOI:10.1016/j.bej.2007.04.016
  2. Assawadithalerd, M. & Phasukarratchai, N. (2020) Optimization of Cadmium and Zinc Removal from Contaminated Soil by Surfactants Using Mixture Design and Central Composite Rotatable Design. Water Air Soil Pollut. 231:1–12. DOI:10.1007/s11270-020-04704-w
  3. Chaprão, M.J., Ferreira, I.N.S. & Correa, P.F. (2015) Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron. J. Biotechnol. 18:471–479. DOI:10.1016/j.ejbt.2015.09.005
  4. EPA (1996) Method 3540C, soxhelet extraction. 283
  5. Fanaei, F., Moussavi, G. & Shekoohiyan, S. (2020) Enhanced treatment of the oil-contaminated soil using biosurfactant-assisted washing operation combined with H 2 O 2 -stimulated biotreatment of the effluent. J. Environ. Manage. 271:110941. DOI:10.1016/j.jenvman.2020.110941
  6. Gao, Y.C., Guo, S.H. & Wang, J.N. (2014) Effects of different remediation treatments on crude oil contaminated saline soil. Chemosphere 117:486–493. DOI:10.1016/j.chemosphere.2014.08.070
  7. Gautam, P., Bajagain, R. & Jeong, S.W. (2020) Combined effects of soil particle size with washing time and soil-to-water ratio on removal of total petroleum hydrocarbon from fuel contaminated soil. Chemosphere 250:126206. DOI:10.1016/j.chemosphere.2020.126206
  8. Gitipour, S., Hedayati, M. & Madadian, E. (2015) Soil Washing for Reduction of Aromatic and Aliphatic Contaminants in Soil. Clean - Soil, Air, Water 43:1419–1425. DOI:10.1002/clen.201100609
  9. Han, M., Ji, G. & Ni, J. (2009) Chemosphere Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant , alkyl polyglucoside. Chemosphere 76:579–586. DOI:10.1016/j.chemosphere.2009.05.003
  10. Hernández-Espriú, A., Sánchez-León. E., Martínez-Santos, P. & Torres, L.G. (2013) Remediation of a diesel-contaminated soil from a pipeline accidental spill: Enhanced biodegradation and soil washing processes using natural gums and surfactants. J. Soils Sediments 13:152–165. DOI:10.1007/s11368-012-0599-5
  11. Huang, Z., Wang, D. & Ayele, B.A. (2020) Enhancement of auxiliary agent for washing efficiency of diesel contaminated soil with surfactants. Chemosphere 252:126494. DOI:10.1016/j.chemosphere.2020.126494
  12. Huguenot, D., Mousset, E., Hullebusch, E.D. & Van Oturan, M.A. (2015) Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J. Environ. Manage. 153:40–47. DOI:10.1016/j.jenvman.2015.01.037
  13. Kuppusamy, S., Thavamani, P. & Venkateswarlu, K. (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 168:944–968. DOI:10.1016/j.chemosphere.2016.10.115
  14. Lai, C.C., Huang, Y.C., Wei, Y.H. & Chang, J.S. (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 167:609–614. DOI:10.1016/j.jhazmat.2009.01.017
  15. Lee, J.K., Kim, B.U. & Park, D. (1999) Thermal Treatment of Petroleum Contaminated Soils by a Fluidized Bed Desorber. Korean J. Chem. Eng. 16:684–687. DOI:10.1007/BF02708152
  16. Liu, J., Zhao, L. & Liu, Q. (2021) A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int. J. Environ. Sci. Technol. DOI:10.1007/s13762-021-03144-1
  17. Mebarka, D.H., Taleb, S. & Benghalem, A. (2012) Residue analysis of some PAHs in some algerian soil: A preliminary environmental impact assessment. Energy Procedia 18:1125–1134. DOI:10.1016/j.egypro.2012.05.127
  18. Niven, R.K. & Khalili, N. (1998) In situ multiphase fluidization (“upflow washing”) for the remediation of hydrocarbon contaminated sands. Can. Geotech. J. 35:938–960. DOI:10.1139/t98-067
  19. Olasanmi, I.O. & Thring, R.W. (2020) Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils. J. Adv. Res. 21:79–90. DOI:10.1016/j.jare.2019.07.003
  20. Ortiz, I., Ávila-Chávez, M. & Torres, L. (2018) Removal of α- and β- Endosulfan from Soils by Using Natural and Synthetic Surfactants. Asian J. Environ. Ecol. 6:1–11. DOI:10.9734/ajee/2018/40009
  21. Ould Saadi, M. & Dounit, S. (2014) Lavage des sables contaminés par les hydrocarbures en colonne à lit fluidisé : Approche expérimentale. Déchets, Sci. Tech. DOI:10.4267/dechets-sciences-techniques.210
  22. Qi, B., Chen, Y. & Chen, D. (2021) Insight into Washing of Wet and Dry Crude Oil‐Contaminated Soil. CLEAN – Soil, Air, Water 2000440:2000440. DOI:10.1002/clen.202000440
  23. Rongsayamanont, W. & Tongcumpou, C. (2020) Diesel-Contaminated Soil Washing by Mixed Nonionic Surfactant Emulsion and Seed Germination Test. Water Air Soil Pollut. 231:267. DOI:10.1007/s11270-020-04649-0
  24. Saeedi, M., Li, L.Y. & Grace, J.R. (2019) Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from natural soil by combined non-ionic surfactants and EDTA as extracting reagents: Laboratory column tests. J. Environ. Manage. 248:109258. DOI:10.1016/j.jenvman.2019.07.029
  25. Urum, K. & Pekdemir, T. (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57:1139–1150. DOI:10.1016/j.chemosphere.2004.07.048
  26. Urum, K., Pekdemir, T., Ross, D. & Grigson, S. (2005) Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants. Chemosphere 60:334–343. DOI:10.1016/j.chemosphere.2004.12.038
  27. Viglianti, C., Hanna, K., De Brauer, C. & Germain, P. (2006) Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study. Environ. Pollut. 140:427–435. DOI:10.1016/j.envpol.2005.08.002
  28. Vuruna, M., Veličković, Z. & Perić, S. (2017) The influence of atmospheric conditions on the migration of diesel fuel spilled in soil. Arch. Environ. Prot. 43:73–79. DOI:10.1515/aep-2017-0004
  29. Walker, A.I.T., Brown, V.K.H. & Ferrigan, L.W. (1967) Toxicity of sodium lauryl sulphate, sodium lauryl ethoxysulphate and corresponding surfactants derived from synthetic alcohols. Food Cosmet. Toxicol. 5:763–769. DOI:10.1016/S0015-6264(67)83275-9
  30. Zhang, W., Li, J. & Huang, G. (2011) An experimental study on the bio-surfactant-assisted remediation of crude oil and salt contaminated soils. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 46:306–313. DOI:10.1080/10934529.2011.539115
Go to article

Authors and Affiliations

Mohammed Aouf
1
ORCID: ORCID
Salah Dounit
1
ORCID: ORCID

  1. Laboratory of Génie des Procédés, Faculty of Applied Sscience, Kasdi Merbah University, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The increasing demand for noble metals boosts their price. In order to meet the increasing demand for elements, a number of technologies are being developed to recover elements already present in the environment.Traffic-related metal pollution is a serious worldwide concern. Roadside soils are constantly subjected to the deposition of metals released by tailpipe gases, vehicle parts, and road infrastructure components. These metals,especially platinum group elements from catalytic converters, accumulating in the soil pose a risk both for agricultural and residential areas. Phytomining is suggested as a novel technology to obtain platinum group metals from plants grown on the contaminated soil, rock, or on mine wastes. Interest in this method is growing as interest in the recovery of rare metals is also increasing. Based on the research of many authors, the sources and amounts of noble metals that accumulate in soil along communication routes have been presented. The paper presents also plants that can be used for phytomining.
Go to article

Bibliography

  1. Ahmed, E. & Holmstrom, S.J.M. (2014). Siderophores in environmental research: role and applications. Microb. Biotechnol., 7 (3), pp. 196-208, DOI: 10.1111/1751-7915.12117
  2. Ali, S., Abbas, Z., Rizwan, M., Zaheer, L.E., Yavas, I., Unay, Z., Abdel-Daim, M.M., Bin-Jumah, M., Hasanuzzaman, M. & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability, 12, pp. 1927, DOI:10.3390/se12051927
  3. Anderson, C.W.N., Brooks, R.R., Stewart, R.B. & Simcock, R. (1998). Harvesting a crop of gold in plants. Nature, pp. 553–554. DOI:10.1038/26875
  4. Baker, A.J.M. & Brooks, R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery, 1, pp. 81–126. DOI:10.1080/01904168109362867
  5. Bonanno, G. (2011). Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol. Environ. Saf., 74 (4), pp. 1057–1064. DOI:10.1016/j.ecoenv.2011.01.018
  6. Brooks, R.R. (1998). General introduction. In: Brooks R.R. Plants that hyperaccumulate heavy metals. CAB International. New York. USA, pp. 1-14. DOI:10.1002/9783527615919.ch4
  7. Çolak, M., Gümrükçüoğlu, M., Boysan, F. & Baysal E. (2016). Determination and mapping of cadmium accumulation in plant leaves on the highway roadside, Turkey. Arch. Environ. Prot., 42, 3, pp. 11–16. DOI:10.1515/aep-2016-0023
  8. Dahlheimer, S.R., Neal, C.R. & Fein, J.B. (2007). Potential mobilization of platinum-group elements by siderophore in surface environments. Environ. Sci. Technol., 41 (3), pp. 870-875, DOI:10.1021/es0614666
  9. Dang, P. & Li, C.A. (2021). mini-review of phytomining. Int. J. Environ. Sci. Technol. DOI:10.1007/s13762-021-03807-z
  10. Delgado-Gonzales, C.R., Madariaga-Navarrete, A., Fernandez-Cortes, J. M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M.N. & Sharma, A. (2021). Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. Int. J. Environ. Res. Public Health., 18, pp. 5215. DOI:103390/ijrph18105215.
  11. Dinh T., Dobo Z., Kovacs H. (2022) Phytomining of noble metals – A review. Chemosphere, 286, 131805. https://doi.org/10.1016/j.chemosphere.2021.131805Flanagan, K., Bleken, G.T., Osterlund, H., Nordqvist, K. & Viklander, M. (2021). Contamination of urban stormwater pond sediments: A study of 259 legacy and contemporary organic substances. Environ. Sci. Technol., 55 (5), pp. 3009-3020. DOI:10.1021/ acs.est.0c07782.
  12. Fujita Corporation. Daiwa House Group. EAP technologies’ https://www.fujita.com/news-releases/120119.html
  13. Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F.J. & Tassin, B. (2018). Microplastics in air: Are webreathing it in? Curr Opin Environ Sci Health., 1, pp. 1-5. DOI:10.1016/j.coesh.2017.10.002
  14. Gawrońska, H. & Bakera, B. (2015). Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health., 8, pp. 265–272. DIOI:10.1007/s11869-014-0285-4
  15. Gawrońska, H., Przybysz, A., Szalacha, E., Pawlak, K., Brama, K., Miszczak, A., Stankiewicz-Kosyl, M. & Gawroński, S.W. (2018). Palatinum uptake, distribution and toxicity in Arabidopsis thaliana L. plants. Ecotoxicol. Environ. Saf., 147, pp. 982-989. DOI:10.1016/j.ecoenv.2017.09.065
  16. Gawroński, S.W., Greger, M. & Gawronska, H. (2011). Plant taxonomy and metal phytoremediation. In Ed. Sherameti I , Varma A. Soil biology vol. 30 Detoxification of heavy metals, Springier. London, pp. 91-109, DOI:10.1007/978-3-642-21408-0_5
  17. Global Database 2017 http://hyperaccumulators.smi.uq.edu.au/collection/
  18. González-Valdez, E., Alarcón, A., Ferrera-Cerrato, R., Vega-Carrillo, H.R., MaldonadoVega, M., Salas-Luévano, M.Á., Argumedo-Delira, R., (2018). Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus Niger and the application of two chemical compounds. Ecotoxicol. Environ. Saf. 154 (February), 180–186. DOI:10.1016/j. ecoenv.2018.02.055
  19. Gregoratos, T. & Martini, G. (2015). Brake wear particle emission: A review. Envarionmental Science and Pollution Research International, 22, pp. 2491-2504. DOI:10.1007/s11356-014-3696-8
  20. Harumain, Z.A., Parker, H.L., Muñoz García, A., Austin, M.J., McElroy, C.R. & Hunt, A.J. (2017). Toward financially viable phytoextraction and production of plant-based palladium catalysts. Environ Sci Technol, 51(5), pp. 2992–3000. DOI:10.1021/acs.est.6b0482
  21. Haverkamp, R.G., Marshall, A.T., Van Agterveld, D., (2007). Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J. Nanoparticle Res. 9 (4), 697–700. DOI:10.1007/s11051-006-9198-y
  22. Helmers, E. (1997). Pt emission rate of automobiles with catalytic converters: comparison and assessment of results from various approaches. Environ. Sci. Pollution Res., 4, pp. 100-103. DOI:10.1007/BF02986288
  23. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration. Arch. Environ. Prot., 43, 1, pp. 48–64. DOI:10.1515/aep-2017-0005
  24. Jowitt, S.M., Werner, T.T., Weng, Z. & Mudd, G.M. (2018). Recycling of the rare earth elements. Current Opinion in Green and Sustainable Chemistry, 13, pp. 1–7. DOI:10.1016/j.cogsc.2018.02.008
  25. Kim, K., Raymond, D. & Candeago, R. (2021). Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control. Nat Commun, 12, pp. 6554. DOI:10.1038/s41467-021-26814-7
  26. Kończak B., Cempa M., Pierzchała Ł. & Deska M. (2021). Assessment of the ability of roadside vegetation to remove particulate matter from the urban air. Environmental Pollution, 268 (Pt B): 115465. DOI:10.1016/j.envpol.2020.115465
  27. Kowalska, J., Huszal, S., Sawicki, M., Asztemborska, M., Stryjewska, E., Szalacha, E., Golimowski, J. & Gawroński, S.W. (2004). Voltammetric Determination of platinum in plant material. Electroanalysis, 15, pp. 1266-1270. DOI:10.1002/elan.200302907
  28. Krisnayanti, B., Anderson, C., Sukartono, S., Afandi, Y., Suheri, H. & Ekawanti, A. (2016). Phytomining for artisanal gold mine tailings management. Minerals, 6, pp. 84. DOI:10.3390/min6030084
  29. Ladonin, D.V. (2017). Platinum-group elements in soils and streets dust of the Southeastern Administrative District of Moscow. Eurasian Soil Sci., 51, pp. 274-283, DOI:10.1134/S1064229318030055
  30. Liang, L., Wang, Z., & Li, J. (2019). The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. Journal of cleaner production, 237, 117649.
  31. Liu, K., & Lin, B. (2019). Research on influencing factors of environmental pollution in China: A spatial econometric analysis. Journal of Cleaner Production, 206, 356-364.
  32. Liu, W.S., van der Ent, A., Erskine, P., Morel, J.L. & Echevarria, G. (2020). Spatially Resolved Localization of Lanthanum and Cerium in the Rare Earth Element Hyperaccumulator Fern Dicranopteris linearis from China., American Chemical Society, Environ. Sci. Technol., 54 (4), pp. 2287-2294. DOI:10.1021/acs.est.9b05728
  33. Łutczyk, G. (2008). Platinum and palladium as pollutants of roadside soils in Warsaw. Master Thesis. Warsaw University of Life Sciences, 59pp.
  34. Mathieu, L. (2021). From dirty oil to clean batteries. Transport & Environment, pp. 75.
  35. Matodzi, V., Legodi, M.A. & Tavengwa, N.T. (2020). Determination of Platinum group metals in dust, water, soil and sediments in the vicinity of a cement manufacturing plant. SN Appl. Sci., 2, pp. 1090. DOI:10.1007/s42452-020-2882-1
  36. McGrane S.C. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review, Hydrological Sciences Journal, 61:13, 2295-2311. DOI:10.1080/02626667.2015.1128084
  37. Mesjasz-Przybyłowicz, J., Nakonieczny, M., Migula, P., Augustyniak, M., Tarnawska, M., Reimold, W.U., Koerbel, C., Przybyłowicz, W. & Głowacka, E. (2004). Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biologica Cracoviensia Series Botanica, 46, pp. 75–85.
  38. Mikołajczak, P., Borowiak, K. & Niedzielski, P. (2017). Phytoextraction of rare earth elements in herbaceous plant species growing close to roads. Environ Sci Pollut Res, 24, pp. 14091–14103. DOI:10.1007/s11356-017-8944-2
  39. Mleczek, P., P., Borowiak, K., Budka, A., Szostek, M. & Niedzielski, P. (2021). Possible sources of rare earth elements near different classes of road in Poland and their phytoextraction to herbaceous plant species. Environmental Research, pp. 193, 110580. DOI:10.1016/j.envres.2020.110580
  40. Moreira, H., Mench, M., Pereira, S., Garbisu, C. & Kidd, P. (2021). Phytomanagement of Metal(loid)-Contaminated Soils: Options, Efficiency and Value. Frontiers in Environmental Science, Frontiers, pp. 9. DOI:10.3389/fenvs.2021.661423
  41. Müller A., Österlund H., Marsalek J. & Viklander M. (2020). The pollution conveyed by urban runoff: A review of sources, Science of The Total Environment, 709, 136125. DOI:10.1016/j.scitotenv.2019.136125
  42. Nkrumah, P. N., Tisserand, R., Chaney, R.L., Baker, A.J.M., Morel, JL., Goudon, R., Erskine, P.D., Echevarria, G. & van der Ent, A. (2018). The firet tropical ‘metal farm’: Some perspectives from field and pot experiments. J. Geochem. Explor., 198, pp. 114-124. DOI:10.1016/j.gexplo.2018.12.003
  43. Nowak, D.J., Crane, D.E. & Stevens, J.C. (2006). Air pollution removal by urban tree and shrubs in the United States. Urban For Urban Green., 4(3-4), pp. 115-123. DOI:10.1016/j.ufug.2006.01.007
  44. Okoroafor, P. & Wiche, O. (2020). Screening of plants of different species and functional groups for phytomining of rare earth elements in soil, EGU General Assembly, pp. 4–8, EGU2020-1021. DOI:10.5194/egusphere-egu2020-1021, 2019.
  45. Pagliaro, M. & Meneguzzo, F. (2019). Lithium battery reusing and recycling: A circular economy insight. Heliyon, pp. 5, e01866.DOI:10.1016/j.heliyon.2019.e01866
  46. Rajakaruna, N. & Bohm, B.A. (2002). Serpentine and its vegetation: A preliminarystudy from Sri Lanka. J. Appl. Bot., 76, pp. 20-28.
  47. Ramos, S.J., Dinali, G.S., Oliveira, C., Martins, G.C., Moreira, C.G., Siqueira, J.O. & Guilherme, L.R.G. (2016). Rare Earth Elements in the Soil Environment. Curr. Pollution Rep., 2, pp. 28–50. DOI:10.1007/s40726-016-0026-4
  48. Reeves, R.D., Baker, A.J.M., Jaffre, T., Erskine, P.D., Echevarria, G. & van der Ent, A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218, pp. 407–411. DOI:10.1111/nph.14907
  49. Reeves, R.D., Schwartz, C., Morel, J-L. & Edmondson, J. (2001). Distribution and metalaccumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int. J. Phytoremediation, 3, pp. 145–172. DOI:10.1080/15226510108500054
  50. Reith, F., Campbell, S.G., Ball, A.S., Pring, A. & Southam, G. (2014). Platinum in Earth surface environments. Earth-Science Reviews, 131, pp. 1-21. DOI:10.1016/j.earscirev.2014.01.003
  51. Rotkittikhun, P., Kruatrachue, M., Chaiyarat, R., Ngernsansaruay, C., Pokethitiyook, P., Paijitprapaporn, A. & Baker, A.J.M. (2006). Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environ. Pollut., 144, pp. 681-688. DOI:10.1016/j.envpol.2005.12.039
  52. Schafer, J. & Puchlet, H. (1998). Platinum-group-metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soils. J. Geochem. Explor., 64, pp. 307-314. DOI:10.1016/S0375-6742(98)00040-5
  53. Schafer, J., Hannker, D., Eckhardt, J.D. & Stuben, D. (1998). Uptake of traffic-related heavy metals and platinum group elements (PGE) by plants. Sci. Total Environ., 215, pp. 59-67. DOI:10.1016/S0048-9697(98)00115-6
  54. Shan, X.Q., Wang, H., Zhang, S., Zhou, H., Zheng, Y., Yu, H. & Wen, B. (2003). Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci., 165, pp. 1343-1353. DOI:10.1016/S0168-9452(03)00361-3
  55. Stein, RJ, Höreth, S, de Melo, J.R.F., Syllwasschy, L, Lee, G., Garbin, M.L., Clemens, S. & Krämer, U. (2017). Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytologist, 213, pp. 1274–1286. DOI:10.1111/nph.14219
  56. Sun J., Yu J., Ma Q., Meng F., Wei X.,Sun Y., Tsubaki N. 2018. Freezing copper as a noble meta-like catalyst for preliminary hydrogenation. Science Advances 4: eaau3275.
  57. Sun, F.B., Yin, Z., Lun, X.X., Zhao, Y., Li, R. N., Shi, F.T. & Yu, X. (2014). Decomposition velocity of PM 2,5 in the winter and spring above coniferous forests in Beijing. China. PLoS one 9/5. DOI:10.1371/journal.pone.0097723.
  58. Sun, X., Luo, XS. & Xu, J. (2019) Spatio-temporal variations and factors of a provincial PM2.5 pollution in eastern China during 2013–2017 by geostatistics. Sci Rep 9, 3613. DOI:10.1038/s41598-019-40426-8
  59. Van der Ent, A., Echevarria, G., Baker, A.J.M. & Morel, J.L. (2018). Agromining: Farming for metals. Springer. DOI:10.1007/978-3-319-61899-9
  60. Yan, A., Wang, Y., Tan, S.N., Yusof, M.L.M., Ghosh, S. & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 2020. 11, article 359. DOI:10.3389/fpls.2020.00359
  61. Yu H., Ma J., Chen F., Zhang Q., Wang Y. & Bian Z. (2022). Effective remediation of electronic waste contaminated soil by the combination of metal immobilization and phytoremediation, Journal of Environmental Chemical Engineering, 2022, 107410. DOI:10.1016/j.jece.2022.107410
  62. Wilson-Corral, V., Anderson, C., Rodriguez-Lopez, M., Arenas-Vargas, M., LopezPerez, J., (2011). Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Miner. Eng. 24 (13), 1488–1494. DOI:10.1016/j.mineng.2011.07.014
  63. Zereini, F., Wiseman, C.L.S.,Vang, M., Alberts, P., Schneider, W., Schindl, R. & Leopold, K. (2016). Geochemical behavior of palladium in soils and Pd/PdO model substances in presences of the organic complexing agents L-methionine and citric acid. Microb. Biotechnol., 18 (1), pp. 22-31. DOI:10.1039/c5em00521c
Go to article

Authors and Affiliations

Stanisław Gawroński
1
Grzegorz Łutczyk
2
Wiesław Szulc
1
ORCID: ORCID
Beata Rutkowska
1
ORCID: ORCID

  1. Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Poland
  2. Generalna Dyrekcja Dróg Krajowych i Autostrad, Poland
Download PDF Download RIS Download Bibtex

Abstract

With the increase in use and application of carbon nanomaterials and the frequent presence of fluoroquinolones and tetracyclines antibiotics in the aquatic environment, their interactions have attracted extensive attention. In this study, adsorption of two antibiotics: oxytetracycline (OTC) and ciprofloxacin (CIP) by four carbon-based nanomaterials (graphene oxide, reduced graphene oxide, multiwalled carbon-nanotubes, oxidized multiwalled carbon-nanotubes) affected by pH was investigated. The experiment was performed in two steps: (i) adsorption of OTC and CIP at different pH values, (ii) adsorption isotherm studies of both antibiotics on four carbon-based nanomaterials. Both steps were conducted using the batch equilibration technique. The results showed that the adsorption of both antibiotics on studied adsorbents was highly pH-dependent. The highest adsorption was obtained at pH 7.0, implying the importance of the zwitterionic antibiotics forms to adsorption. Antibiotics adsorption isotherms at three given pH values followed the order of pH 7.0 > 1.0 > 11.0, which confirmed zwitterionic species of OTC and CIP as having the greatest ability to adsorb on carbonaceous nanomaterials. Electrostatic interaction, π-π EDA interaction, hydrophobic interaction for both antibiotics, and additionally hydrogen bond for CIP were possible mechanisms responsible for OTC and CIP adsorption onto studied nanomaterials. These results should be important to understand and assess the fate and interaction of carbon-based nanomaterials in the aquatic environment. This study can also be important for the use of carbon nanomaterials to remove antibiotics from the environment.
Go to article

Bibliography

  1. Ahmed, M.J. (2017). Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environ. Toxicol. Pharmacol. 50, 1-10. DOI:10.1016/j.etap.2017.01.004
  2. Carabineiro, S.A.C., Thavorn-amornsri, T., Pereira, M.F.R., Serp, P. & Figueiredo, J.L. (2012). Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today, 186(1), 29–34. DOI:10.1016/j.cattod.2011.08.020
  3. ECDC, 2018. European Centre for disease prevention and Control. An agency of the Europe-an Union. Country overview of antimicrobial consumption. http://www.ecdc. euro-pa.eu/en/activities/surveillance/esac-net/pages/index.aspx.
  4. Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M. & Korzeniewska, E. (2019). Antimicrobial pharmaceuticals in the aquatic environment - occurrence and en-vironmental implications. Europ J of Pharm, 172813. DOI:10.1016/j.ejphar.2019.172813
  5. Figueroa, R.A. & MacKay, A.A., (2005). Sorption of Oxytetracycline to Iron Oxides and Iron Oxide-Rich Soils. Environ. Sci. Technol, 39(17), 6664–6671. DOI:10.1021/es048044l
  6. Figueroa, R.A., Leonard, A. & MacKay, A.A. (2004). Modeling Tetracycline Antibiotic Sorp-tion to Clays. Environ. Sci. Technol., 38(2), 476–483. DOI:10.1021/es0342087
  7. Franz, M., Arafat, H.A. & Pinto, N.G. (2000). Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38 1807–1819. DOI:10.1016/S0008-6223(00)00012-9
  8. Freundlich, H.M.F. (1906). Over the adsorption in solution. J Phys Chem 57, 385–347
  9. Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M. & Su, X. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Coll. Inter. Sci., 368(1), 540–546. DOI:10.1016/j.jcis.2011.11.015
  10. Genç, N. & Dogan, E.C. (2013). Adsorption kinetics of the antibiotic ciprofloxacin on benton-ite, activated carbon, zeolite, and pumice. Desalin. Water Treat. 53, 785-793. DOI:10.1080/19443994.2013.842504
  11. Gnihotri, A.S., Rostam-Abadi, M. & Rood, M.J. (2004) Temporal changes in nitrogen adsorp-tion properties of single-walled carbon nanotubes, Carbon, 42, 2699–2710. DOI:10.1016/j.carbon.2004.06.016
  12. Golet, E.M., Xifra, I., Siegrist, H., Alder, A.C. & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 37, 3243–3249. DOI:10.1021/es0264448
  13. Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., Zoub, H., Ottosond, J., Nilssone, L.E., Berglunde, B., Dyara, O.J., Tamhankar, A.J. & Stålsby Lundborg, C. (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environ. Int. 114, 131–142. DOI:10.1016/j.envint.2018.02.003
  14. Ji, L.C.W., Duan, L. & Zhu, D.Q. (2009). Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsor-bents. Environ. Sci. Technol. 43, 2322–2327. DOI:10.1021/es803268b
  15. Ji, L., Chen, W., Bi, J., Zheng, S., Xu, Z., Zhu, D. & Alvarez, P.J. (2010). Adsorption of tet-racycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 29, 2713-2719. DOI:10.1002/etc.350
  16. Kolanowska, A., Wąsik, P., Zięba, W., Terzyk, A.P. & Boncel, S. (2019) Selective carboxyla-tion versus layer-by-layer unsheathing of multi-walled carbon nanotubes: new insights from the reaction with boiling nitrating mixture. RSC Adv., 9, 37608-37613. DOI:10.1039/C9RA08300F
  17. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361–1403. DOI:10.1021/ja02242a004
  18. Lalwani, G., D’Agati, M., Khan, A.M. & Sitharaman, B. (2016). Toxicology of graphene-based nanomaterials. Adv. Drug Del. Rev., 105, 109–144. DOI:10.1016/j.addr.2016.04.028
  19. Lemańska, N., Felis, E., Poraj-Kobielska, M., Gajda-Meissner, Z. & Hofrichter, M. (2021). Comparison of sulphonamides decomposition efficiency in ozonation and enzymatic oxidation processes. Arch. Environ. Protect. 47 (1), 10–18. DOI:10.24425/aep.2021.136443
  20. Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y. & Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. and Des., 91(2), 361–368. DOI:10.1016/j.cherd.2012.07.007
  21. Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y. & Li, K. (2008). Determination and fate of oxy-tetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ. Toxicol. Chem. 27, 80-86. DOI:10.1897/07-080.1
  22. Liu, F.F., Zhao, J., Wang, S. & Xing, B. (2016). Adsorption of sulfonamides on reduced gra-phene oxides as affected by pH and dissolved organic matter. Environ. Pollut, 210, 85–93. DOI:10.1016/j.envpol.2015.11.053
  23. Liu, F.F., Zhao, J., Wang, S., Du, P. & Xing, B. (2014). Effects of solution chemistry on ad-sorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ. Sci. Technol. 48, 13197-13206. DOI:10.1021/es5034684
  24. Loos, R., Carvalho, R., António, D.C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fickd, J., Lindberg, R.H., Schwesig, D. & Gawlik, B.M. (2013). EU-wide monitor-ing survey on emerging polar organic contaminants in wastewater treatment plant ef-fluents. Water Res. 47, 6475–6487. DOI:10.1016/j.watres.2013.08.024
  25. Ma, J., Yang, M., Yu, F. & Zheng, J. (2015). Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel. Sci Rep 5, 13578. DOI:10.1038/srep13578
  26. Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C. & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the re-lease of antibiotics in the environment: a review. Water Res. 47, 957–995. DOI:10.1016/j.watres.2012.11.027
  27. Pan, B. & Xing, B. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42, 9005–9013. DOI:10.1021/es801777n
  28. Papageorgiou, D.G., Kinloch, I.A. & Young, R.J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Prog. in Mat. Sci., 90, 75–127. DOI:10.1016/j.pmatsci.2017.07.004
  29. Reis, E.O., Foureaux, A.F.S., Rodrigues, J.S., Moreira, V.R., Lebron, Y.A.R., Santos, L.V.S., Amaral, M.C.S. & Lange, L.C. (2019). Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environ. Pollut. 250, 773–781. DOI:10.1016/j.envpol.2019.04.102
  30. Rostamian, R. & Behnejad, H. (2018). A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets. Eco. and Enviro. Saf., 147, 117–123. DOI:10.1016/j.ecoenv.2017.08.019
  31. Sheng, G.D., Shao, D.D., Ren, X.M., Wang, X.Q., Li, J.X., Chen, Y.X. & Wang, X.K. (2010). Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. J. Hazar. Mat., 178(1-3), 505–516. DOI:10.1016/j.jhazmat.2010.01.110
  32. Smajic, J., Alazmi, A., Batra, N., Palanisamy, T., Anjum, D.H. & Cost, P.M.F.J. (2018). Mes-oporous Reduced Graphene Oxide as a High Capacity Cathode for Aluminum Batter-ies. Small, 14(51), 1803584. DOI:10.1002/smll.201803584
  33. Szymańska, U., Wiergowski, M., Sołtyszewski, I., Kuzemko, J., Wiergowska, G. & Woźniak, M.K. (2019). Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: recent trends and perspectives. Microchem. J. 147, 729–740. DOI:10.1016/j.microc.2019.04.003
  34. Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M. & Barceló, D. (2012). Hospital efflu-ent: investigation of the concentrations and distribution of pharmaceuticals and envi-ronmental risk assessment. Sci. Total Environ. 430, 109–118. DOI:10.1016/j.scitotenv.2012.04.055
  35. Wang, X., Yin, R., Zeng, L. & Zhu, M. (2019) A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environ. Pollut 253, 100-110. DOI:10.1016/j.envpol.2019.06.067
  36. Wang, C.J., Li, Z. & Jiang, W.T. (2011). Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals. Apply. Clay Sci., 53(4), 723–728. DOI:10.1016/j.clay.2011.06.014
  37. Wang, Z., Yu, X., Pan, B. & Xing, B. (2010). Norfloxacin Sorption and Its Thermodynamics on Surface-Modified Carbon Nanotubes. Environ. Sci. Technol, 44(3), 978–984. DOI:10.1021/es902775u
  38. Watkinson, A.J., Murby, E.J., Kolpin, D.W. & Costanzo, S.D. (2009). The occurrence of anti-biotics in an urban watershed: from wastewater to drinking water. Sci. Total Environ. 407, 2711–2723. DOI:10.1016/j.scitotenv.2008.11.059
  39. Xu, B., Yue, S., Sui, Z., Zhang, X., Hou, S., Cao, G. & Yang, Y. (2011). What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci., 4(8), 2826-2830. DOI:10.1039/c1ee01198g
  40. Yadav, S., Goel, N. & Kumar, V. (2018). Removal of fluoroquinolone from aqueous solution using graphene oxide: experimental and computational elucidation. Environ Sci Pollut Res 25, 2942–2957. DOI:10.1007/s11356-017-0596-8
  41. Zhang, G.F., Liu, X., Zhang, S., Pan, B. & Liu, M.L. (2018). Ciprofloxacin derivatives and their antibacterial activities. Eu. J. Med. Chem. 146, 599-612. DOI:10.1016/j.ejmech.2018.01.078
  42. Zhang, D., Pan, B., Zhang, H., Ning, P. & Xing, B. (2010). Contribution of Different Sulfa-methoxazole Species to Their Overall Adsorption on Functionalized Carbon Nano-tubes. Environ. Sci. Technol, 44(10), 3806–3811. DOI:10.1021/es903851q
  43. Zhao, J., Wang, Z., Ghosh, S. & Xing, B. (2014). Phenanthrene binding by humic acideprotein complexes as studied by passive dosing technique. Environ. Pollut. 184, 145-153. DOI:10.1016/j.envpol.2013.08.028
  44. Zheng, H., Wang, Z., Zhao, J., Herbert, S. & Xing, B. (2013). Sorption of antibiotic sulfa-methoxazole varies with biochars produced at different temperatures. Environ. Pollut, 181, 60–67. DOI:10.1016/j.envpol.2013.05.056
  45. Zhu, D.Q. & Pignatello, J.J. (2005). Characterization of aromatic compound sorptive interac-tions with black carbon (charcoal) assisted by graphite as a model, Environ. Sci. Tech-nol. 39, 2033–2041. DOI:10.1021/es0491376
Go to article

Authors and Affiliations

Filip Gamoń
1
Mariusz Tomaszewski
1
Grzegorz Cema
1
Aleksandra Ziembińska-Buczyńska
1

  1. Silesian University of Technology, Department of Environmental Biotechnology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was optimization of antimony speciation methodology in soils in areas subjected to industrial anthropopressure from traffic, metallurgy and recycling of electrowaste (e-waste) sources. Antimony speciation was carried out using the hyphenated HPLC-ICP-MS (High-Performance Liquid Chromatography- Inductively Coupled Plasma-Mass Spectrometry) technique for the determination of antimony species ((Sb(III), Sb(V), SbMe3). The extraction and determination of antimony species in soil was optimized and validated, taking into account the matrix effects. The best results in antimony extraction from soils were obtained using a mixture of 100 mM citric acid and 20 mM Na2EDTA. Ions were successfully separated in 6 minutes on Hamilton PRPX100 column with 0.11 μg/L, 0.16 μg/L, 0.43 μg/L limit of detection for Sb(III), Sb(V), SbMe3, respectively. The oxidized antimony form (Sb(V)) predominated in the soil samples. The reduced antimony form (Sb(III)) was present only in a few samples, characterized by the lowest pH. The methyl derivative of antimony (SbMe3) was present in the samples with the lowest redox potential from the area around WEEE (Waste of Electrical and Electronic Equipment) treatment plant. The methodology of extraction and determination of three antimony species in soils was developed, achieving low limits of quantification and very good recovery. The research showed a large variation in antimony content in the soils impacted by type of industrial anthroporessure. The antimony content was the highest in the area of the WEEE treatment plant, indicating this type of industrial activity as a significant source of soil contamination with antimony.
Go to article

Bibliography

  1. Bagherifam, S., Brown, T.C., Wijayawardena, A. & Naidu, R. (2021). The influence of different antimony (Sb) compounds and ageing on bioavailability and fractionation of antimony in two dissimilar soils, Environmental Pollution, 270, 1, pp. 116270. https://doi.org/10.1016/j.envpol.2020.116270
  2. Barker, A.J., Mayhew L.E., Douglas, T.A., Ilgen, A.G. & Trainor T.P. (2020). Lead and antimony speciation associated with the weathering of bullets in a historic shooting range in Alaska, Chemical Geology, 553, pp. 119797. https://doi.org/10.1016/j.chemgeo.2020.119797
  3. Barragan, J.A., Ponce de León, C., Alemán Castro, J. R., Peregrina-Lucano A., Gómez-Zamudio F. & Larios-Durán, E.R. (2020), Copper and Antimony Recovery from Electronic Waste by Hydrometallurgical and Electrochemical Techniques, ACS Omega, 5(21), pp. 12355–12363. doi: 10.1021/acsomega.0c01100
  4. Bi, X., Li, Z., Zhuang, X., Han, Z. & Yang, W. (2011). High levels of antimony in dust from e-waste recycling in southeastern China, Science of the Total Environment, 409, pp. 5126–5128. DOI:10.1016/j.scitotenv.2011.08.009
  5. De Gregori, I., Quiroz, W., Pinochet, H., Pannier, F. & Potin-Gautier, M. (2007). Speciation analysis of antimony in marine biota by HPLC-(UV)-HG-AFS: Extraction procedures and stability of antimony species, Talanta, 73, pp. 458-465. DOI: 10.1016/j.talanta.2007.04.015
  6. Directive (EU) 2020/2184 of the European Parliament and of the council of 16 December 2020 on the quality of water intended for human consumption https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0040&from=EL
  7. Diquattro, S., Castidi, P., Ritch, S., Juhasz, L.J., Brunetti, G., Scheckel, K.G., Garau, G. & Lombi, E. (2021). Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation, Science of The Total Environment, 770, pp. 145354. https://doi.org/10.1016/j.scitotenv.2021.145354
  8. Filella, M., Belzile, N. & Chen, Y. (2002). Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry, Earth-Science Reviews, 59, pp. 265–285. DOI: 10.1002/chin.200323280
  9. Ge, Z. & Wei, C. (2013). Simultanous Analysis of SbIII, SbV and TMSb by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry Detection: Application to Antimony Speciation in Soil Samples, Journal of Chromatographic Science, 51, pp. 391-399. https://doi.org/10.1093/chromsci/bms153
  10. Hammel, W., Debus, R. & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants, Chemosphere, 41, pp. 1791-1798. DOI: 10.1016/s0045-6535(00)00037-0
  11. He, M., Wang, N., Long, X., Zhang, C., Ma, C., Zhong, Q., Wang, A., Wang, Y., Pervaiz, A. & Shan, J. (2019). Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects, Journal of Environmental Sciences, 75, pp. 14–39. DOI: 10.1016/j.jes.2018.05.023
  12. Herath, I., Vithanage, M. & Bundschuh, J. (2017). Antimony as a global dilemma: geochemistry, mobility, fate and transport, Environmental Pollution, 223, pp. 545–559. DOI: 10.1016/j.envpol.2017.01.057
  13. Jabłońska-Czapla, M., Rachwał M., Grygoyć K. & Wawer M. (2022). Identification of the antimony sources in soils in areas subject to industrial anthropopressure using geophysical-geochemical methods, Chemosphere (under review).
  14. Jabłońska-Czapla, M., Szopa, S. & Rosik-Dulewska, Cz. (2014a). Impact of mining dump on the accumulation and mobility of metals in the Bytomka River sediments, Archives of Environmental Protection, 40, 2, pp. 3-19. DOI: 10.2478/aep-2014-0013
  15. Jabłońska-Czapla, M., Szopa, S., Grygoyć, K., Łyko, A. & Michalski, R. (2014b). Development and validation of HPLC–ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study, Talanta, 120, pp. 475-483. https://doi.org/10.1016/j.talanta.2013.11.092
  16. Ji, Y., Mestrot, A., Schulin, R. & Tandy, S. (2018). Uptake and transformations of methylated and inorganic antimony in plants, Frontiers in Plant Science, 9, 140, pp. 1-10. https://doi.org/10.3389/fpls.2018.00140
  17. Jia, X., Ma L., Liu, J., Liu, P., Yu, L., Zhou, J., Li, W., Zhou W. & Dong., Z. (2022). Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: Integrated biosorption and precipitation, Journal of Hazardous Materials, 426, pp.127385. https://doi.org/10.1016/j.jhazmat.2021.127385
  18. Kozak, L. & Niedzielski, P. (2008). Determination of inorganic antimony species by hyphenated technique high performance liquid chromatography with hydride generation atomic absorption spectrometry detection, Archives of Environmental Protection, 34, 4, pp. 71-79.
  19. Kulka, E. & Gzyl, J. (2008). Assessment of lead and cadmium soil contamination in the vicinity of a non-ferrous metal smelter, Archives of Environmental Protection, 34, pp. 105-115.
  20. Loska, K., Wierchuła, D. & Korus, I. (2004). Antimony concentration in farming soil of southern Poland, Bulletin of Environmental Contamination and Toxicology, 72, pp. 858-865. DOI:10.1007/S00128-004-0323-2
  21. Martinez, A.M. & Escheberria, J. (2016).Towards a better understanding of the reaction between metal powders and the solid lubricant Sb2S3 in a low-metallic brake pad at high temperature, Wear, 348-349, pp. 27-42. DOI: 10.1016/j.wear.2015.11.014
  22. Muhammad Shahid, N., Khalid, S., Dumat, C., Pierart, A. & Niazi N.K. (2019). Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health, Applied Geochemistry, 106, pp. 45-59. https://doi.org/10.1016/j.apgeochem.2019.04.006
  23. Nishad, P.A. & Bhaskarapillai, A. (2021) Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies, Chemosphere, 277, pp. 130252. https://doi.org/10.1016/j.chemosphere.2021.130252
  24. Pasieczna, A. (2012). The content of antimony and bismuth in the soils of agricultural lands in Poland, Polish Journal of Agronomy, 10, pp. 21-29. (in Polish)
  25. Qi, C., Liu, G., Kang, Y., Lam, P.K.S. & Chou, C. (2011). Assessment and distribution of antimony in soils around three coal mines, Anhui China, Journal of the Air & Waste Management Association, 61, pp. 850-857. DOI: 10.3155/1047-3289.61.8.850
  26. Quan, S.X., Yan, B., Yang, F., Li, N., Xiao, X.M. & Fu, J.M. (2015). Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site, Environmental Science and Pollution Research, 22, pp. 1290-1298. DOI: 10.1007/s11356-014-3420-8
  27. Quiroz, W., Cortes, M., Astudillo, F., Bravo, M., Cereceda, F., Vidal, V. & Lobos, M.G. (2013). Antimony speciation in road dust and urban particulate matter in Valparaiso, Chile: Analytical and environmental considerations, Microchemical Journal, 10, pp. 266-272. DOI: 10.1016/j.microc.2013.04.006
  28. Rachwał, M., Wawer, M., Magiera T. & Steinnes, E. (2017). Integration of soil magnetometry and geochemistry for assessment of human health risk from metallurgical slag dumps. Environmental Science and Pollution Research, 24, pp. 26410–26423. DOI: 10.1007/s11356-017-0218-5
  29. Regulation of the Minister of the Environment of September 1, 2016 on the method of assessing pollution of the earth's surface, Journal of Laws No. 1395 (in Polish) https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20160001395
  30. Warchulski, R., Gawęda, A., Kądziołka-Gaweł, M. & Szopa, K. (2015). Composition and element mobilization in pyrometallurgical slags from the Orzeł Biały smelting plant in the Bytom Piekary Śląskie area, Poland. Mineralogical Magazine, 79, 2, pp. 459–483. https://doi.org/10.1180/minmag.2015.079.2.21
  31. Wei, C., Ge, Z., Chu, W. & Feng, R. (2015). Speciation of antimony and arsenic in the soils and plants in an old antimony mine, Environmental and Experimental Botany, 109, pp. 31-39. https://doi.org/10.1016/j.envexpbot.2014.08.002
  32. Wu, T., Cui, X., Ata-Ul-Karim, S.T., Cui, P., Liu, C., Fan, T., Sun, Q., Gong, H., Zhou, D. & Wang Y. (2022). The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system. Chemosphere, 297, pp. 134147. https://doi.org/10.1016/j.chemosphere.2022.134147
  33. Zhang, Z., Lu, Y., Li, H., Zhang, N., Cao, J., Qui, B. & Yang, Z. (2021). Simultaneous Separation of Sb(III) and Sb(V) by High Performance Liquid Chromatography (HPLC) – Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) with Application to Plants, Soils and Sediments, Analytical Letters, 54, 6, pp. 919-934. DOI:10.1080/00032719.2020.1788049
Go to article

Authors and Affiliations

Magdalena Jabłońska-Czapla
1
ORCID: ORCID
Katarzyna Grygoyć
1
ORCID: ORCID
Marzena Rachwał
1

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research aimed at determining the catchment areas that pose a risk of nitrogen pollution of the waters of the Mała Panew river. The research was carried out in 13 permanent monitoring points located on the Mała Panew. The location of the points ensured the representativeness of the water quality results for parts of the catchment area with a homogeneous type of land use. Concentrations of nitrate-nitrogen (NO3-N) and total nitrogen (TN) were determined in the samples taken. The content of (NO3-N) in the third quarter of the year and its relation to the value obtained for the first year quarter may be an indicator of the impact of agricultural activities on the quality of water in streams. In the case of agricultural catchments, the lowest concentrations of NO3-N and TN occur in the third quarter of the year and are significantly lower than in the first quarter of the year. The demonstrated seasonal variability of nitrate nitrogen concentrations in agriculturally used areas may be used to determine the type of pressure not allowing to achieve good water status in the surface water body. It was shown that the highest unit increments occurred in areas with a high proportion of forest.
Go to article

Bibliography

  1. Banasik, K., Wałęga, A., Węglarczyk, S. & Więzik B. (2017). Update of the methodology for calculating maximum flows and rainfall with a specific exceedance probability for controlled and uncontrolled catchments and identification of rainfall-runoff transformation models, Association of Polish Hydrologists, Warszawa 2017 (in Polish).
  2. Bian, Z., Liu, L. & Ding, S. (2019). Correlation between spatial-Temporal Variation in landscape patterns and surface water quality: A case study in the Yi River watershed, China. Applied Sciences, 9, 1053. DOI:10.3390/app9061053.
  3. Bo, W., Wang, X., Zhang, Q., Xiao, Y. & Ouyang, Z. (2018). Influence of land use and point source pollution on water quality in a developed region: A case study in shunde, China. International Journal of Environmental Research and Public Health, 15, 51. DOI:10.3390/ijerph15010051.
  4. Kurek, K., Bugajski, P., Młyński, D. & Nowobilska-Majewska E. (2019). The Impact of Treated Sewage on Water Quality in Mordarka Stream. Journal of Ecological Engineering, 20, 1, pp. 39–45. DOI:10.12911/22998993/93874.
  5. Brysiewicz, A., Bonisławska, M., Czerniejewski, P. & Kierasiński, B. (2019). Quality analysis of waters from selected small water-courses within the river basins of Odra River and Wisła River. Rocznik Ochrony Środowiska, 21, pp. 1202–1216 (in Polish).
  6. Crooks, E., Harris I., M. & Patil, S.P. (2021). Influence of Land Use Land Cover on River Water Quality in Rural North Wales. Journal of the American Water Resources Association, 57, 3, pp .357–373. DOI:10.1111/1752-1688.12904.
  7. Environment (2020). Statistics Poland, Spatial and Environmental Surveys Department, Warszawa 2020.
  8. Górski, J., Dragon, K. & Kaczmarek P. M. J. (2019). Nitrate pollution in the Warta River (Poland) between 1958 and 2016: trends and causes. Environmental Science and Pollution Research, 26, pp. 2038–2046. DOI:10.1007/s11356-017-9798-3.
  9. Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraui, F. & van de Bund W. (2017). Human pressures and ecological status of European rivers. Scientific Reports, 7, 205. DOI:10.1038/s41598-017-00324-3.
  10. Grizzetti, B., Vigiak, O., Udias, A., Aloe, A., Zanni, M., Bouraoui, F., Pistocchi, A., Dorati, C., Friedland, R., De Roo, A., Benitez Sanz, C., Leip, A. & Bielza, M. (2021). How EU policies could reduce nutrient pollution in European inland and coastal waters. Global Environmental Change, 69, 102281. DOI:10.1016/j.gloenvcha.2021.102281.
  11. Gruss, Ł., Wiatkowski, M., Pulikowski, K. & Kłos, A. (2021). Determination of Changes in the Quality of Surface Water in the River - Reservoir System. Sustainability,13, 6, pp.1–18. DOI:10.3390/su13063457.
  12. HELCOM (2018). Sources and pathways of nutrients to the Baltic Sea. Balt Sea Environ Proceedings, 153. (https://helcom.fi/media/publications/BSEP153.pdf/((18.05.2021)).
  13. Hus, T. & Pulikowski, K. (2011). Content of nitrogen compounds in waters flowing out of small agricultural catchments. Polish Journal Environmental Studie, 20, pp. 895–902.
  14. Micek, A., Jóźwiakowski, K., Marzec, M., Listosz, A. & Grabowski, T. (2021). Efficiency and Technological Reliability of Contaminant Removal in Household WWTPs with Activated Sludge. Applied Sciences, 11, 1889. DOI:10.3390/app11041889.
  15. Kiryluk, A. & Rauba, M. (2009). Variability of nitrogen concentratons in variously used agricultural catchment of the Ślina river. Water – Environment – Rural Areas, 9, 4, pp. 71–86 (in Polish).
  16. Mazierski, J. & Kostecki, M. (2021). Impact of the heated water discharge on the water
  17. quality in a shallow lowland dam reservoir. Archives of Environmental Protection, 47, 2, pp. 29–46. DOI:10.24425/aep.2021.137276.
  18. Kowalczyk, A.W. & Kopacz, M. (2020). Analysis of the surface water quality in the Szreniawa River catchment area. Journal of Water and Land Development, 47 (X–XII) pp. 105–112. DOI:10.24425/jwld.2020.135037.
  19. Kostecki, M. (2021). A new antrhropogenic lake Kuźnica Warężyńska – thermal and oxygen conditions after 14 years of exploitation in terms of protection and restoration, Archives of Environmental Protection, 47, 2, pp. 115-127. DOI:10.24425/aep.2021.137283.
  20. Loga, M., Jeliński, M. & Kotamäki, N. (2018). Dependence of water quality assessment on water sampling frequency – an example of Greater Poland rivers, Archives of Environmental Protection, 44, 2, pp. 3–13. DOI:10.24425/119688.
  21. Peng, S., Yan Z., Jinxi, S., Peng, L., Yongsheng, W., Xiaoming, Z., Zhanbin, L., Zhilei, B., Xin, Z., Yanli, Q. & Tiantian, Z. (2019). Response of nitrogen pollution in surface water to land use and social-economic factors in the Weihe River watershed, northwest China Sustainable Cities and Society,50, 101658. DOI:10.1016/j.scs.2019.101658
  22. Li, P., Wei, W. & Lang, M. (2022). Effects of water content on gross nitrogen transformation rates in forest land and grassland soils. Chinese Journal of Applied Ecology, 33 (1): 59-66. DOI:10.13287/j.1001-9332.202201.022
  23. Poikane, S., Kelly, M.G., Salas Herrero, F., Pitt J.A., Jarvie, H.P., Claussen, U., Leujak, W., Lyche Solheim, A., Teixeira, H. & Phillips, G. (2019). Nutrient criteria for surface waters under the European Water Framework Directive: Current state-of-the-art, challenges and future outlook. Science of The Total Environment, 695, 133888. DOI:10.1016/j.scitotenv.2019.133888.
  24. Pohl, A. & Kostecki, M. (2020). Spatial distribution, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in water and bottom sediments of the anthropogenic lymnic ecosystems under conditions of diversifi ed anthropopressure. Archives of Environmental Protection, 46, 4, pp. 104–120. DOI 10.24425/aep.2020.135769
  25. Pulikowski, K., Czyżyk, F., Pawęska, K. & Strzelczyk, M. (2012). Participation of nitrate nitrogen in total nitrogen content in waters outflowing from catchment with agricultural use, Infrastructure and ecology of rural areas, 3, I, pp. 155–165 (in Polish).
  26. Shi, P., Zhang, Y., Song, J., Li, P., Wang, Y., Zhang, X., Bi, Z., Zhang, X., Qin, Y. & Tiantian, Z. (2019). Response of nitrogen pollution in surface water to land use and social-economic factors in the Weihe River watershed, northwest China. Sustainable Cities and Society, 50, 101658. DOI:10.1016/j.scs.2019.101658.
  27. Sliva, L. & Williams, D.D. (2001). Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Research, 35, pp. 3462–3472. DOI:10.1016/S0043-1354(01)00062-8.
  28. State Forests. Regional Directorate of in Katowice. Forest Management Plan for the Koszęcin Forest Inspectorate. For the period 01.01.2020 - 31.12.2029 r. Plan urządzenia lądu dla Nadleśnictwa Koszęcin. Na okres 01.01.2020r.-31.12.2029r. [on line: file:///C:/Users/ITP_2_21/Desktop/Pogram_ochrony_przyrody_2020_koszecin.pdf] dostęp w internecie 20.04.2022
  29. State Forests. Regional Directorate of in Katowice. Draft management plan forest management plan for the Brynek Forestry. Projekt urządzenia lasu dla Nadleśnictwa Brynek. [on line: file:///C:/Users/ITP_2_21/Desktop/px_dg_rdlp_katowice_nadl_brynek_nadl_brynek_elaboratbez_danych_wrazliwych.pdf] dostęp w internecie 20.04.2022
  30. State Forests. Regional Directorate of in Katowice. Forest management plan for the Forest District of Opole. Plan urządzenia lasu dla Nadleśnictwa Opole. [on line: file:///C:/Users/ITP_2_21/Desktop/ogolny_opis_lasow_n_opole_2014_2023.pdf] dostęp w internecie 20.04.2022.
  31. State Forests. Regional Directorate of in Katowice. Natural conditions of the Zawadzkie Forest District. Warunki przyrodnicze Nadleśnictwa Zawadzkie. [on line: https://webcache.googleusercontent.com/search?q=cache:vQxKO9EMdv4J:https://zawadzkie.katowice.lasy.gov.pl/lasy-nadlesnictwa/-/asset_publisher/1M8a/content/warunki-przyrodnicze-nadlesnictwa-zawadzkie/maximized+&cd=5&hl=pl&ct=clnk&gl=pl#.Yl_hb55By72 ] dostęp w internecie 20.04.2022.
  32. Sutton, M., Howard, C., Erisman, J., Billen, G., Bleeker, A., Grennfelt, P. & Grizzetti, B. (2011). (Eds.). The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, Cambridge University Press, Cambridge 2011. DOI:10.1017/CBO9780511976988.005
  33. Tomczyk, P. & Wiatkowski, M. (2020). Shaping changes in the ecological status of watercourses within barrages with hydropower schemes - Literature review. Archives of Environmental Protection, 46, pp. 78–94. DOI:10.24425/aep.2020.135767.
  34. Tomczyk, P. & Wiatkowski, M. (2021). The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland. Energies, 14, 2075. DOI:10.3390/en14082075.
  35. Topographic Object Database (2015). Head Office of Land Surveying and Cartography, Warszawa 2014.
  36. Wiatkowski M., Rosik-Dulewska Cz., Kuczewski K., Kasperek K. 2013. Quality Assessment of Włodzienin Reservoirs in the First Year of Its Operation. Annual Set The Environment Protection, Vol. 15, 2666-2682. (In Polish)
  37. Wiatkowski M. Problems of water management in the reservoir Młyny located on the Julianpolka river. Acta Sci. Pol. Formatio Circumiectus, 14 (3) 2015, 191–203. DOI:10.15576/ASP.FC/2015.14.3.191 (In Polish)
  38. Wiatkowski M. & Wiatkowska B. (2019). Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis, Archives of Environmental Protection, 45, 1, pp. 26–41. DOI:10.24425/aep.2019.126339.
  39. Wilk, P., Orlińska-Woźniak, P. & Gębala, J. (2017). Variability of nitrogen to phosphorus concentraction ratio on the example of selected coastal river basin, Scientific Review – Engineering and Environmental Sciences, 26 (1), pp. 55–65. DOI:10.22630/PNIKS.2017.26.1.05
  40. Yong, S. & Chen, W. (2002). Modeling the relationship between land use and surface water quality. J Environ Manage. 66, pp. 377–393. DOI:10.1006/jema.2002.0593.
  41. Żarnowiec, W., Policht-Latawiec, A. Pytlik, & A. (2017). Dynamics of physicochemical parameter concentrations in the Graniczna Woda stream water, Journal of Water and Land Development, 35, pp. 281–289. DOI: 10.1515/jwld-2017-0095.
Go to article

Authors and Affiliations

Aleksandra Steinhoff-Wrześniewska
1
Maria Strzelczyk
1
ORCID: ORCID
Marek Helis
1
ORCID: ORCID
Anna Paszkiewicz-Jasińska
1
ORCID: ORCID
Łukasz Gruss
2
Krzysztof Pulikowski
2
Witold Skorulski
3

  1. Institute of Technology and Life Science – National Research Institute
  2. Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences
  3. ART Strefa Witold Skorulski
Download PDF Download RIS Download Bibtex

Abstract

Artificial water reservoirs pose impact on the natural environment. Impact of the artificial Czorsztyn Lake on groundwater and land management is assessed. The study is based on long-term observations of chemistry, groundwater levels and spring discharges during reservoir construction, filling, and 25-year-long exploitation. Land management changes caused by reservoir construction were recognized using remote sensing. Reservoir construction resulted in land management change in the study area. Built-up and forest areas gained prevalence over farmland areas. Two types of groundwater dominate: HCO3–Ca and HCO3–Ca–Mg, both before reservoir filling (68% analyses) and afterwards (95% analyses), and in control analyses from September 2020 (100% analyses). Gradual decrease in the occurrence of water types with the sulphate ion exceeding 20% mvals is documented, which points to water quality improvement trends. Moreover, changes of water saturation index values with regard to aquifer-forming mineral phases during reservoir construction and early exploitation phasei ndicate hydrochemical modifications. Decrease of groundwater level was related with transformation of the Dunajec river valley during reservoir construction and, accordingly, decrease of regional drainage base level. Groundwater level increased after reservoir filling, which points to coupled impact of the reservoir and increased precipitation recharge. Construction of the Czorsztyn Lake resulted in gradual land management transformation from farmlands into tourist-recreational areas. This change and river valley flooding by surface waters did not cause significant modifications in groundwater quantity and quality. Organization of water-sewage management related with reservoir construction resulted in noticeably improved quality trends.
Go to article

Bibliography

  1. Al-adili, A., Khasaf, S. & Ajaj, A.W.S. (2014). Hydrological Impacts of Iraqi Badush Dam on Groundwater, 4, June, pp. 90–106.
  2. Allen, P.A. (1997). Earth Surface Processes. John Wiley & Sons, Hoboken, NJ, USA.
  3. Appelo, C.A.J. & Postma, D. (2005). Geochemistry, Groundwater and Pollution. A.A. Balkema, Leiden.
  4. Baxter, R.M. (1977). Environmental Effects of Dams and Impoundments, Annual Review of Ecology and Systematics, 8, pp. 255–283.
  5. Birkenmajer, K. (1979). Geological Guidebook to the Pieniny Klippen Belt. Wydawnictwo Geologiczne, Warsaw. (in Polish)
  6. Birkenmajer, K. (2017). Geology of the Pieniny Mountains - Monographs of the Pieniny Mts. Vol. 3. Pieniński Park Narodowy, Krościenko on the Dunajec. (in Polish)
  7. Çelik, R. (2018). Impact of Dams on Groundwater Static Water Level Changes: a Case Study Kralkızı and Dicle Dam Watershed, Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 10, 2, pp. 119–126, DOI: 10.29137/umagd.442483.
  8. Chowaniec, J. & Witek, K. (1997). Hydrogeological Map od Poland 1: 50 000 with Description. Polish Geological Institute - National Research Institute, Warsaw. (in Polish)
  9. Clark, I. (2015). Groundwater Geochemistry and Isotopes. CRC Press, Taylor & Francis Group, Boca Raton, London, New York.
  10. Claverie, M., Vermote, E.F., Franch, B. & Masek, J.G. (2015). Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products, Remote Sensing of Environment, 169, pp. 390–403, DOI: 10.1016/j.rse.2015.08.030.
  11. Congedo, L. (2020). Semi-Automatic Classification Plugin Documentation. (https://media.readthedocs.org/pdf/semiautomaticclassificationmanual-v4/latest/semiautomaticclassificationmanual-v4.pdf (21.10. 2020))
  12. Francis, B.A., Francis, L.K. & Cardenas, M.B. (2010). Water table dynamics and groundwater-surface water interaction during filling and draining of a large fluvial island due to dam-induced river stage fluctuations, Water Resources Research, 46, 7, pp. 1–5, DOI: 10.1029/2009WR008694.
  13. Graf, W.L. (1999). Dam nation: A geographic census of american dams and their large-scale hydrologic impacts, Water Resources Research, 35, 4, pp. 1305–1311, DOI: 10.1029/1999WR900016.
  14. Ho, M., Lall, U., Allaire, M., Pal, I., Raff, D., Wegner, D., Devineni, N. & Kwon, H.H. (2017). The future role of dams in the United States of America, Water Resources Research, pp. 982–998, DOI: 10.1002/2016WR019905.Received.
  15. Humnicki, W. (2007). Hydrogeology of the Pieniny Mountains. Wydawnictwa Uniwersytetu Warszawskiego, Warsaw. (in Polish)
  16. Humnicki, W. (2009). Geological conditions of groundwater occurrence in the Pieniny Klippen Belt (West Carpathians, Poland), Studia Geologica Polonica, 132, pp. 39–69. (in Polish)
  17. Jóźwiak, K. & Krogulec, E. (2006). Geochemical modeling as an element ofprotected area monitoring, Przeglad Geologiczny, 54, 11, pp. 987–992. (in Polish)
  18. Kulka, A., Rączkowski, W., Żytko, K., Gucik, S. & Paul, Z. (1985). Detailed Geological Map of Poland, scale 1: 50 000 - Szczawnica - Krościenko sheet. Wydawnictwa Geologiczne, Warsaw. (in Polish)
  19. Łaniewski, J. (1997). Czorsztyn, Gospodarka Wodna, 12, pp. 391–393, .
  20. Li, H., Wang, C., Zhong, C., Su, A., Xiong, C., Wang, J. & Liu, J. (2017). Mapping urban bare land automatically from Landsat imagery with a simple index, Remote Sensing, 9, 249, pp. 1–15, DOI: 10.3390/rs9030249.
  21. Loveland, T.R. & Irons, J.R. (2016). Landsat 8: The plans, the reality, and the legacy, Remote Sensing of Environment, 185, pp. 1–6, DOI: 10.1016/j.rse.2016.07.033.
  22. Małecka, D. (1981). Hydrogeology of Podhale. Wydawnictwa Geologiczne, Warsaw. (in Polish)
  23. Małecka, D., Humnicki, W., Małecki, J.J. & Łabaszewski, W. (1996). Characteristics and assessment of the current water quality in the area of the Czorsztyn Reservoir, Przegląd Geologiczny, 44, 11, pp. 1103–1110. (in Polish)
  24. Małecki, J.J. (1998). Role of aeration zone in forming chemical composition of shallow ground waters, based on cases of selected hydrogeochemical environments, Biuletyn Państwowego Instytutu Geologicznego, 381, pp. 1–219. (in Polish)
  25. Mika, A.M. (1997). Three decades of Landsat instruments, Photogrammetric Engineering and Remote Sensing, 63, 7, pp. 839–852.
  26. Parkhurst, D.L. & Appelo, C.A.J. (2013). Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Techniques and Methods. (http://pubs.usgs.gov/tm/06/a43/ (02.10. 2021))
  27. PN-89/C-04638/02. (1989). Water and sewage. Ion balance of water. Method of calculating the ionic balance of water. Warsaw. (in Polish)
  28. Przybyłek, J. (2016). Predictions and identification of groundwater impact of the Jeziorsko Lake during its long-term exploitation. , Gospodarka Wodna, 9, pp. 314–323.(in Polish)
  29. Richards, J.A. (2013). Remote Sensing Digital Image Analysis. An Introduction. Springer-Verlag, Berlin, Heidelberg.
  30. Szczepańska, J. & Kmiecik, E. (1998). Statistical data quality control in groundwater monitoring. Wydawnictwa AGH, Kraków. (in Polish).
  31. U.S. Geological Survey. (2016). Landsat 8 (L8) Data Users Handbook. Sioux Falls, USA.
  32. U.S. Geological Survey. (2020)a. Landsat 8 Level 2 Science Product ( L2SP ) Guide. Sioux Falls, USA.
  33. U.S. Geological Survey. (2020)b. Landsat 4-7 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Sioux Falls, USA.
  34. Wilk-Woźniak E., Pociecha A. & Mazurkiewicz-Boroń G. (2010) Comparison of choosen physico-chemical and biologocal parameters of the Czorsztyński dam reservoir in 1998 and 2005. Monographs of the Pieniny Mts. Vol. 2. Pieniński Park Narodowy, Krościenko on the Dunajec, pp. 107-121. (in Polish)
  35. Witczak, S., Kania, J. & Kmiecik, E. (2013). Catalog of selected physical and chemical indicators of groundwater pollution and their determination methods. Inspekcja Ochrony Środowiska, Warsaw. (in Polish)
  36. Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S.N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P.S., Vermote, E.F., Vogelmann, J., Wulder, M.A. & Wynne, R. (2008). Free Access to Landsat Imagery, Science, 320, 5879, pp. 1011–1012, DOI: 10.1126/science.320.5879.1011a.
  37. Zhang, L., Yang, D., Liu, Y., Che, Y. & Qin, D. (2014). Impact of impoundment on groundwater seepage in the Three Gorges Dam in China based on CFCs and stable isotopes, Environmental Earth Sciences, 72, 11, pp. 4491–4500, DOI: 10.1007/s12665-014-3349-8.
Go to article

Authors and Affiliations

Włodzimierz Humnicki
1
ORCID: ORCID
Ewa Krogulec
1
Jerzy Małecki
1
ORCID: ORCID
Marzena Szostakiewicz-Hołownia
1
ORCID: ORCID
Anna Wojdalska
1
Daniel Zaszewski
1
ORCID: ORCID

  1. Faculty of Geology, University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The very high need for personal protective equipment (PPE) impacts the waste generated after using these tools. Therefore, to deal with mask waste during the COVID-19 pandemic, this study was carried out on the processing of mask waste using a thermal process and studied how the potential of this process was for the effectiveness of mask waste processing during the pandemic. This research was conducted on Honeymoon Beach by collecting data on mask waste generated during the pandemic, then measuring the waste proximate, ultimate, and calorific value and testing the thermal process using TGA and Piro GC-MS measurements. Most waste masks found on Honeymoon Beach are non-reusable masks, 94.74%, while reusable masks are 5.26%. The waste is then subjected to thermal processing and analysis using TGA and Piro GC-MS. Based on the data obtained, the thermal process can reduce the mass of non-reusable and reusable mask samples by 99.236% and 88.401%, respectively.The results of the Piro GC-MS analysis show that the lit mask waste will produce fragments of compounds that can be reused as fuel. The process is simple and easy and produces residues that can be reused to reduce environmental pollution due to waste generation during the COVID-19 pandemic.
Go to article

Bibliography

  1. Akhbarizadeh, R., Dobaradaran, S., Nabipour, I., Tangestani, M., Abedi, D., Javanfekr, F., Jeddi, F. & Zendehboodi, A. (2021). Abandoned Covid-19 personal protective equipment along the Bushehr shores, the Persian Gulf: An emerging source of secondary microplastics in coastlines. Marine Pollution Bulletin, 168, 112386. DOI:10.1016/j.marpolbul.2021.112386
  2. Ammendolia, J., Saturno, J., Brooks, A. L., Jacobs, S. & Jambeck, J. R. (2021). An emerging source of plastic pollution: Environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environmental Pollution, 269, 116160. DOI:10.1016/j.envpol.2020.116160
  3. Ayse, L. A., Dempster, E., Aparsi, T. D., Bawan, M., Arredondo, M. C., Chau, C., Chandler, K. D., Dobri-jevic, Hailes, H., Lettieri, P., Liu, C., Medda, F., Michie, F., Michie, S., Miodownik, M., Purkiss, D. & Ward, J. (2020). The enviromnetal dangers of employing single-use face masks as parts of a COVID-19 exit strategy. UCL Open: Environment.
  4. Benson, N. U., Fred-Ahmadu, O. H., Bassey, D. E. & Atayero, A. A. (2021). COVID-19 pandemic and emerging plastic-based personal protective equipment waste pollution and management in Africa. Journal of Environmental Chemical Engineering, 9(3), 105222. DOI:10.1016/j.jece.2021.105222
  5. Carter, E. A., Swarbrick, B., Harrison, T. M. & Ronai, L. (2020). Rapid identification of cellulose nitrate and cellulose acetate film in historic photograph collections. Heritage Science, 8(1), 1–13. DOI:10.1186/s40494-020-00395-y
  6. Cordova, M. R., Nurhati, I. S., Riani, E., Nurhasanah & Iswari, M. Y. (2021). Unprecedented plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta Bay during COVID-19 pandemic. Chemosphere, 268, 129360. DOI:10.1016/J.CHEMOSPHERE.2020.129360
  7. Fadare, O. O. & Okoffo, E. D. (2020). Covid-19 face masks: A potential source of microplastic fibers in the environment. The Science of the Total Environment, 737, 140279. DOI:10.1016/j.scitotenv.2020.140279
  8. Fatimah, Y. A., Govindan, K., Murniningsih, R. & Setiawan, A. (2020). Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. Journal of Cleaner Production, 269, 122263. DOI:10.1016/j.jclepro.2020.122263
  9. Google Map. (2021). Google Map. https://www.google.com/maps/place/
  10. Jung, S.-H., Cho, M.-H., Kang, B.-S. & Kim, J.-S. (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 91(3), 277–284. DOI:10.1016/j.fuproc.2009.10.009
  11. Marshall, R. E. & Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4), 988–1003. DOI:10.1016/j.wasman.2012.12.023
  12. Miandad, R., Rehan, M., Barakat, M. A., Aburiazaiza, A. S., Khan, H., Ismail, I. M. I., Dhavamani, J., Gardy, J., Hassanpour, A. & Nizami, A.-S. (2019). Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries. Frontiers in Energy Research, 7, 27. DOI:10.3389/fenrg.2019.00027
  13. Mutiara, M., Inoue, T., Harryes, R. K., Suryawan, W. K., Yokota, K., Notodarmojo, S., Priyambada, I. B. & Septiariva, I. Y. (2021). Potential of Waste to Energy Processing for Sustainable Tourism in Nusa Penida Island, Bali. Journal Bahan Alam Terbarukan, 10(200), 96–103. http://journal.unnes.ac.id/nju/index.php/jbat
  14. Neupane, B. B., Mainali, S., Sharma, A. & Giri, B. (2019). Optical microscopic study of surface morphology and filtering efficiency of face masks. PeerJ, 7, e7142. DOI:10.7717/peerj.7142
  15. Rakib, M. R. J., De-la-Torre, G. E., Pizarro-Ortega, C. I., Dioses-Salinas, D. C. & Al-Nahian, S. (2021). Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in Cox’s Bazar, the longest natural beach in the world. Marine Pollution Bulletin, 169, 112497. DOI:10.1016/j.marpolbul.2021.112497
  16. Sangkham, S. (2020). Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering, 2, 100052. DOI:org/10.1016/J.CSCEE.2020.100052
  17. Sari, G. L., Hilmi, I. L., Nurdiana, A., Azizah, A. N. & Kasasiah, A. (2021). Infectious Waste Management as the Effects of Covid-19 Pandemic in Indonesia. Asian Journal of Social Science and Management Technology, 3(2), 62–75.
  18. Selvaranjan, K., Navaratnam, S., Rajeev, P. & Ravintherakumaran, N. (2021). Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. Environmental Challenges, 3, 100039. DOI:10.1016/j.envc.2021.100039
  19. Septiariva, Sarwono, A., Suryawan, I. W. K. & Ramadan, B. S. (2022). Municipal Infectious Waste during COVID-19 Pandemic: Trends, Impacts, and Management. International Journal of Public Health Science (IJPHS), 11(2). DOI:10.11591/ijphs.v11i2.21292
  20. Sharma, H. B., Vanapalli, K. R., Cheela, V. R. S., Ranjan, V. P., Jaglan, A. K., Dubey, B., Goel, S. & Bhattacharya, J. (2020). Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, 162, 105052. DOI:10.1016/j.resconrec.2020.105052
  21. Singh, E., Kumar, A., Mishra, R. & Kumar, S. (2022). Solid waste management during COVID-19 pandemic: Recovery techniques and responses. Chemosphere, 288, 132451. DOI:10.1016/j.chemosphere.2021.132451
  22. Suryawan, I. W. K., Rahman, A., Septiariva, I. Y., Suhardono, S. & Wijaya, I. M. W. (2021). Life Cycle Assessment of Solid Waste Generation During and Before Pandemic of Covid-19 in Bali Province. Journal of Sustainability Science and Management, 16(1), 11–21. DOI:10.46754/jssm.2021.01.002
  23. Suryawan, I. W. K., Septiariva, I. Y., Fauziah, E. N., Ramadan, B. S., Qonitan, F. D., Zahra, N. L., Sarwono, A., Sari, M. M., Ummatin, K. K. & Wei, L. J. (2022). Municipal Solid Waste to Energy: Palletization of Paper and Garden Waste into Refuse Derived Fuel. Journal of Ecological Engineering, 23(4), 64–74.
  24. Swennen, G. R. J., Pottel, L. & Haers, P. E. (2020). Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. International Journal of Oral and Maxillofacial Surgery, 49(5), 673–677. DOI:10.1016/j.ijom.2020.03.015
  25. Trinh, V. T., Van, H. T., Pham, Q. H., Trinh, M. V. & Bui, H. M. (2020). Treatment of medical solid waste using an Air Flow controlled incinerator. Polish Journal of Chemical Technology, 22(1), 29–34. DOI:10.2478/pjct-2020-0005
  26. Zahra, N. L., Septiariva, I. Y., Sarwono, A., Qonitan, F. D., Sari, M. M., Gaina, P. C., Ummatin, K. K., Arifianti, Q. A. M. O., Faria, N., Lim, J.-W., Suhardono, S. & Suryawan, I. W. K. (2022). Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF). International Journal of Renewable Energy Development, 11(2), 523–532. DOI:10.14710/ijred.2022.44328
Go to article

Authors and Affiliations

Mega Mutiara Sari
1
Takanobu Inoue
2
Iva Yenis Septiariva
3
I Wayan Koko Suryawan
1
ORCID: ORCID
Shigeru Kato
2
Regil Kentaurus Harryes
4
Kuriko Yokota
2
Suprihanto Notodarmojo
5
Sapta Suhardono
6
Bimastyaji Surya Ramadan
7

  1. Department of Environmental Engineering, Universitas Pertamina, Jakarta Selatan, Indonesia
  2. Department of Architecture and Civil Engineering, Toyohashi University of Technology, Japan
  3. Sanitary Engineering Laboratory, Study Program of Civil Engineering Universitas Sebelas Maret, Surakarta, Indonesia
  4. Faculty of Vocational Studies, Indonesia Defense University, Indonesia
  5. Department of Environmental Engineering, Institut Technologi Bandung, Indonesia
  6. Department of Environmental Science, Universitas Sebelas Maret., Surakarta Central Java, Indonesia
  7. Department of Environmental Engineering, Universitas Diponegoro, Semarang, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Livestock production is the basis of global food production and it is a serious threat to the environment. Significant environmental pollutants are odors and ammonia (NH3) emitted from livestock buildings. The aim of the study was to determine the concentration and emission factors of ammonia and odors, in the summer season, from a deep-litter fattening house. The research was carried out during summer in a mechanically ventilated fattening piggery located in the Greater Poland Voivodeship. Ammonia concentrations were measured using photoacoustic spectrometer Multi Gas Monitor Innova 1312, and odor concentrations were determined by dynamic olfactometry according to EN 13725:2003 using a TO 8 olfactometer. The NH3 emission factors from the studied piggery, in summer, ranged from 8.53 to 21.71 g·day-1·pig-1, (mean value 12.54±4.89 g·day-1·pig-1). Factors related to kg of body mass were from 0.11 to 0.23 g·day-1·kg b.m.-1 (mean value 0.17±0.06 g·day-1·kg b.m.-1). Odor concentrations in the studied piggery were from 755 to 11775 ouE·m-3 and they were diversified (coefficient of variation 43.8%). The mean value of the momentary odor emission factors was 179.5±78.7 ouE·s-1·pig-1. Factor related to kg of body mass was 2.27±1.71 ouE·s-1·kg b.m.-1. In Poland and many other countries, the litter systems of pigs housing are still very popular. Therefore, there is a need to monitor the pollutant emissions from such buildings to identify the factors influencing the amount of this emission. Another important issue is to verify whether the reduction techniques, giving a measurable effect in laboratory research, bring the same reduction effect in production
Go to article

Bibliography

  1. Bebkiewicz, K., Chłopek, Z., Chojnacka, K., Doberska, A., Kanafa, M., Kargulewicz, I., Olecka, A., Rutkowski, J., Walęzak, M., Waśniewska, S., Zimakowska-Laskowska, M. & Żaczek, M. (2021). Poland’s Informative Inventory Report 2021: Air pollutant emissions in Poland 1990–2019. National Centre for Emissions Management (KOBiZE), Warsaw, Poland. https://cdr.eionet.europa.eu/pl/eu/nec_revised/iir/envyei5sq/IIR_2021_Poland.pdf
  2. Blanes-Vidal, V., Hansen, M.N., Pedersen, S. & Rom, H.B. (2008). Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow, Agriculture, Ecosystems and Environment, 124, pp. 237‒244. DOI:10.1016/j.agee.2007.10.002
  3. Blanes-Vidal, V., Suh, H., Nadimi, E.S., Løfstrøm, P., Ellermann, T., Andersen, H.V. & Schwartz, J. (2012). Residential exposure to outdoor air pollution from livestock operations and perceived annoyance among citizens, Environment International, 40, pp. 44–50. DOI:10.1016/j.envint.2011.11.010
  4. Bokowa, A., Diaz, C., Koziel J. A., McGinley, M., Barclay, J., Schauberger, G., Guillot J.M., Sneath, R., Capelli L., Zorich, V., Izquierdo, C., Bilsen, I., Romain, A.C., del Carmen Cabeza, M., Liu, D., Both, R., Van Belois, H., Higuchi, T. & Wahe, L. (2021. Summary and Overview of the Odour Regulations Worldwide, Atmosphere, 12, pp. 206. DOI:10.3390/atmos12020206
  5. CEN (2003). European Committee for Standardization CEN. Air Quality—Determination of Odour Concentration by Dynamic Olfactometry; EN 13725:2003; CEN: Brussels, Belgium.
  6. Fomunyam, K.G. (2019). Health, mental and emotional impacts of odour producing industrial emissions on man. International Journal of Civil Engineering and Technology, 10, pp. 402–414. Article ID: IJCIET_10_10_039
  7. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/3/i3437e/i3437e.pdf
  8. Guingand, N. & Rugani, A. (2012). Impact of the Reduction of Straw on Ammonia, GHG and Odors Emitted by Fattening Pigs Housed in a Deep-litter System. Ninth International Livestock Environment Symposium. Valencia, Spain, July 8 - 12, ASABE, ILES12-0083.
  9. Guo, H., Dehod, W., Agnew, J., Laguë, C., Feddes, J.R. & Pang, S. (2006). Annual odor emission rate from different types of swine production buildings, Transactions of the ASABE, 49(2), pp. 517−525.
  10. Heber, A., Lim, T., Tao, P., Ni, J. & Schmidt, A. (2008). Effect of Oil Sprinkling in Swine Finishing Barns on Odor Characteristics and Emissions, Chemical Engineering Transactions, 15, pp. 353−361.
  11. Jo, G., Ha, T., Jang, J.N., Hwang, O., Seo, S., Woo, S.E., Lee, S., Kim, D. & Jung, M. (2020). Ammonia Emission Characteristics of a Mechanically Ventilated Swine Finishing Facility in Korea, Atmosphere, 11, pp. 1088. DOI:10.3390/atmos11101088
  12. Margeta, V. & Kralik, G. (2006). Results of zeolit application in fattening of pigs on deep litter, Krmiva, 48, pp. 69-75.
  13. Mielcarek, P., Rzeźnik, W. & Rzeźnik, I. (2014). Ammonia and greenhouse gas emissions from a deep litter farming system for fattening pigs, Problems of Agricultural Engineering, 1(83), pp. 83–90.
  14. Mielcarek, P. & Rzeźnik, W. (2015). Odor Emission Factors from Livestock Production. Polish Journal of Environmental Studies, 24(1), pp. 27–35. DOI: 10.15244/pjoes/29944
  15. Mielcarek, P. & Rzeźnik, W. (2017). The effect of season on the concentration of odours in deep-litter piggery, Journal of Research and Applications in Agricultural Engineering, 62(1), pp. 132−135.
  16. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019). Ammonia emission from livestock production in Poland and its regional diversity, in the years 2005–2017. Archives of Environmental Protection, 45(4), pp. 114–121. DOI:10.24425/aep.2019.130247
  17. Ngwabie, N.M., Jeppsson, K.H., Nimmermark, S. & Gustafsson, G. (2011). Effects of animal and climate parameters on gas emissions from a barn for fattening pigs, Applied Engineering Agriculture, 27, pp. 1027‒1037. DOI:10.1016/j.atmosenv.2011.08.027
  18. Ni, J.Q., Shi, C., Liu, S., Richert, B.T., Vonderohe, C.E. & Radcliffe, J.S. (2019). Effects of antibiotic-free pig rearing on ammonia emissions from five pairs of swine rooms in a wean-to-finish experiment, Environment International, 131, pp. 104931. DOI:10.1016/j.envint.2019.104931
  19. Nicks, B., Laitat, M., Farnir, F., Vandenheede, M., Désiron, A., Verhaeghe, C. & Canart, B. (2004). Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs, Animal Science, 78, pp. 99–107. DOI:10.1017/S1357729800053881
  20. Philippe, F.X., Laitat, M., Canart, B., Vandenheede, M. & Nicks, B. (2007). Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter, Livestock Science, 111, pp. 144–152. DOI:10.1016/j.livsci.2006.12.012
  21. RM (2010). Regulation of the Minister for Agriculture and Rural Development of 15 February 2010 on the requirements and procedure for keeping livestock species for which protection standards have been laid down in European Union legislation. Dz.U. 2010 nr 56 poz. 344. (in Polish)
  22. Rzeźnik, W., Mielcarek, P. & Rzeźnik, I. (2014). Odour emission from a deep litter farming system for fattening pigs, Problems of Agricultural Engineering, 1(83), pp. 91–98.
  23. Schauberger, G., Lim, T.T., Ni, J.Q., Bundy, D.S., Haymore, B.L., Diehl, C.A., Duggirala, R.K. & Heber, A.J. (2013). Empirical model of odor emission from deep-pit swine finishing barns to derive a standardized odor emission factor, Atmospheric Environment, 66, pp. 84–90. DOI:10.1016/j.atmosenv.2012.05.046
  24. Sousa, F.A., Campos, A.T., Amaral P.I.S, Castro, J.O., Yanagi Junior T., Veloso, A.V. & Cecchin, D. (2014). Aerial environment and deep litter temperature in a swine building, Journal of Animal Behaviour and Biometeorology, 2(4), pp. 109–116. DOI:10.14269/2318-1265/jabb.v2n4p109-116
  25. Viatte, C., Wang, T., Van Damme, M., Dammers, E., Meleux, F., Clarisse, L., Shephard, M.W., Whitburn, S., Coheur, P.F., Cady-Pereira, K. E. & Clerbaux, C. (2020). Atmospheric ammonia variability and link with particulate matter formation: a case study over the Paris area, Atmospheric Chemistry and Physics, 20, pp. 577–596. DOI:10.5194/acp-20-577-2020
  26. Wang, K., Wei, B., Zhu, S. & Ye Z. (2011). Ammonia and odour emitted from deep litter and fully slatted floor systems for growing-finishing pigs, Biosystems Engineering, 109(3), pp. 203–210. DOI:10.1016/j.biosystemseng.2011.04.001
  27. Wei, B., Wang, K., Dai, X., Li, Z. & Luo, H. (2010). Evaluation of Indoor Environmental Conditions of Micro-fermentation Deep Litter Pig Building in Southeast China. 2010 ASABE Annual International Meeting, Pittsburgh, Pennsylvania, USA, June 20 - June 23, ASABE 1009679. DOI:10.13031/2013.29979
  28. Wi, J., Lee, S., Kim, E., Lee, M., Koziel, J.A. & Ahn, H. (2019). Evaluation of Semi-Continuous Pit Manure Recharge System Performance on Mitigation of Ammonia and Hydrogen Sulfide Emissions from a Swine Finishing Barn, Atmosphere, 10, pp. 170. DOI:10.3390/atmos10040170
  29. Yunnen, C., Changshi, X. & Jinxia, N. (2016). Removal of Ammonia Nitrogen from Wastewater Using Modified Activated Sludge, Polish Journal of Environmental Studies, 25(1), pp. 419–425. DOI:10.15244/pjoes/60859
  30. Zhou, X. & Zhang, Q. (2003). Measurements of odour and hydrogen sulfide emissions from swine barns, Canadian Biosystems Engineering, 45, pp. 6.13−6.18.
  31. Zong, C., Li, H. & Zhang, G. (2015). Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems, Agriculture, Ecosystems & Environment, 208, pp 94-105. DOI:10.1016/j.agee.2015.04.031.
Go to article

Authors and Affiliations

Paulina Mielcarek-Bocheńska
1
ORCID: ORCID
Wojciech Rzeźnik
2

  1. Institute of Technology and Life Sciences-National Research Institute, Poland
  2. Poznan University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hassi Messaoud oil field is one of the most important fields in Algeria and the world, because it covers an important quantity of total Crude Oil Production in Algeria. Furthermore, two-thirds of this oil field is underexplored or not explored. Therefore, the drilling process of petroleum wells in this field is a continuous process that results in significant drilling waste. This implies that enormous noxious quantities of drilling waste are produced daily that require treatment via solidification/stabilization (S/S) process before being landfilled. These types of wastes have pollution concentration that significantly exceeds the safety standards. In this study, we focus on the factors affecting the solidification/stabilization treatment of the drill cuttings obtained from Hassi Messaoud oil field and the process optimization. The solidification/stabilization is performed using the cement as binder, and sand, silicate, organophilic clay and activated carbon as additives.The study has been divided into two steps: (i) Determining the optimum ratio of each element used in the S/S process for the organic element (hydrocarbon) elimination, (ii) Combining the optimum ratios found in the previous step to determine the optimal mixture. The obtained results in the first step showed that the optimum ratio for the cement-to-drill cuttings mass ratio is 0.09:1. For the additives-to-drill cuttings mass ratios are 0.04:1, 0.006:1, 0.013:1 and 0.013:1 for the sand, sodium silicate, organophilic clay and activated carbon, respectively. An optimum formula is found whose main finding shows that the hydrocarbon content of our sample is dropped from 9.40 to 1.999%. Many tests’ results such as matrix permeability, resistance to free compression and heavy metals rate before and after S/S process were investigated before landfilling. Besides that, in the light of outcomes achieved by this assessment, these harmful cuttings can be converted into a useful product that helps in reducing the environmental foot prints.
Go to article

Bibliography

  1. Abbas, A.H. (2011). Les bourbiers de forages pétroliers et des unités de production:Impact sur l’environnement et technique de traitement. Kasdi Merbeh Ouargla.
  2. Arafat, H.A., Hebatpuria, V.M., Rho, H.S., Pinto, N.G., Bishop, P.L. & Buchanan, R.C. (1999). Immobilization of phenol in cement-based solidified/stabilized hazardous wastes using regenerated activated carbon: Role of carbon. J. Hazard. Mater. 70, 139–156. DOI:10.1016/S0304-3894(99)00127-2
  3. Belferra, A., Kriker, A., Abboudi, S. & Bi, S.T. (2016). Effect of granulometric correction of dune sand and pneumatic waste metal fibers on shrinkage of concrete in arid climates. J. Clean. Prod. 112, 3048–3056. DOI : 10.1016/j.jclepro.2015.11.007
  4. Bodzek, M. (2022). Nanoparticles for water disinfection by photocatalysis: A review. Archives of Environmental Protection, 48, 1, pp. 3–17, DOI:10.24425/aep.2022.140541.
  5. Boutammine, H., Salem, Z. & Khodja, M. (2020). Petroleum drill cuttings treatment using stabilization/solidification and biological process combination. Soil Sediment Contam. 29, 369–383. DOI:10.1080/15320383.2020.1722982
  6. Clark, A.I. & Perry, R. (1985). Cement-Based Stabilization/Solidification Processes for the disposal of toxic wastes. Proceedings from a Workshop on Environmental Technology Assessment. Beaurmont, PWR, Jain, RK and Engelbrecht, RS, Eds. pp. 1 – 44.
  7. Coz, A., Andrés, A., Soriano, S., Viguri, J.R., Ruiz, M.C. & Irabien, J.A. (2009). Influence of commercial and residual sorbents and silicates as additives on the stabilisation/solidification of organic and inorganic industrial waste. J. Hazard. Mater. 164, 755–761. DOI:10.1016/j.jhazmat.2008.08.079
  8. Guide to disposal of chemically stabilized and solidified wastes, 1982. . U.S EPA SW872. DOI:10.1016/0016-2361(79)90171-6
  9. Kherfi, A. & Ganoune, L. (2018). Etude de l ’ efficacité des méthodes de traitement de boue de forage appliquée. Memoire de licence, Universite Kasdi Merbeh Ouargla.
  10. Khodja, M. (2008). Les Fluides De Forage : Etude Des Performances Et Considerations Environnementa 198.
  11. Krauthammer, T., Elfahal, M.M., Lim, J., Ohno, T., Beppu, M. & Markeset, G. (2003). Size effect for high-strength concrete cylinders subjected to axial impact. Int. J. Impact Eng. 28, 1001–1016. DOI:10.1016/S0734-743X(02)00166-5
  12. Lake, C.B. & Menzies, T. (2007). Assessment of two thermally treated drill mud wastes for landfill containment applications. Waste Management & Research: The Journal for a Sustainable Circular Economy 394–401. DOI:10.1177/0734242X07073652
  13. Larbi, A., Daaou, M. & Faraoun, A. (2015). Investigation of structural parameters and self-aggregation of Algerian asphaltenes in organic solvents. Pet. Sci. 12, 509–517. DOI:10.1007/s12182-015-0041-x
  14. Laroche, O., Wood, S.A., Tremblay, L.A., Ellis, J.I., Pawlowski, J., Lear, G., Atalah, J. & Pochon, X. (2016). First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site. Mar. Environ. Res. 120, 225–235. DOI:10.1016/j.mrenvres.2016.08.009
  15. Leonard, S.A., Roy, A.D. & Stegemann, J.A. (2010). Stabilization/solidification of petroleum drill cuttings: Thermal and microstructural studies of binder hydration products. Environ. Eng. Sci. 27, 889–903. DOI:10.1089/ees.2010.0147
  16. Leonard, S.A. & Stegemann, J.A. (2010). Stabilization/solidification of petroleum drill cuttings: Leaching studies. J. Hazard. Mater. 174, 484–491. DOI:10.1016/j.jhazmat.2009.09.078
  17. Liu, J., Nie, X., Zeng, X. & Su, Z. (2012). Cement-based solidification/stabilization of contaminated soils by nitrobenzene. Front. Environ. Sci. Eng. China 6, 437–443. DOI:10.1007/s11783-012-0406-y
  18. Malviya, R. & Chaudhary, R. (2006). Factors affecting hazardous waste solidification/stabilization: A review. J. Hazard. Mater. 137, 267–276. DOI:10.1016/j.jhazmat.2006.01.065
  19. Malviya, R. & Chaudhary, R. (2004). Study of the treatment effectiveness of a solidification/stabilization process for waste bearing heavy metals. J. Mater. Cycles Waste Manag. 6, 147–152. DOI:10.1007/s10163-004-0113-2
  20. Masrullita, Perry Burhan, R.Y. & Trihadiningrum, Y. (2018). Stabilization/solidification of waste containing heavy metals and hydrocarbons using OPC and land trass cement. J. Ecol. Eng. 19, 88–96. DOI:10.12911/22998993/92926
  21. Montgomery, D.M., Sollars, C.J., Perry, R., Tarling, S.E., Barnes, P. & Henderson, E. (1991). Treatment of Organic-Contaminated Industrial Wastes Using Cement-Based Stabilization/Solidification— Ii. Microstructural Analysis of the Organophilic Clay as a Pre-Solidification Adsorbent. Waste Manag. Res. 9, 113–125. DOI:10.1177/0734242X9100900116
  22. Ogechi Opete, S. E., Ibifuro, A.M. & Elijah, T.I. (2010). Stabilization/solidification of synthetic Nigerian drill cuttings. African J. Environ. Sci. Technol. 4, 149–153. DOI:10.5897/ajest09.012
  23. Paria, S. & Yuet, P.K. (2006). Solidification-stabilization of organic and inorganic contaminants using portland cement: A literature review. Environ. Rev. 14, 217–255. DOI:10.1139/A06-004
  24. Poon, C.S., Peters, C.J. & Perry, R. (1985). Mechanisms of Metal Stabilization by Cement Based Fixation Processes. Sci. Total Environ. Elsevier Holland pp. 55 – 71.
  25. Rho, H., Arafat, H.A., Kountz, B., Buchanan, R.C., Pinto, N.G. & Bishop, P.L. (2001). Decomposition of hazardous organic materials in the solidification/stabilization process using catalytic-activated carbon. Waste Manag. 21, 343–356. DOI:10.1016/S0956-053X(00)00080-5
  26. Rosener, M. (2008). Etude pétrophysique et modélisation des effets des transferts thermiques entre roche et fluide dans le contexte géothermique de Soultz-sous-Forêts . To cite this version : HAL Id : tel-00202959 Etude pétrophysique et modélisation des effets des transferts.
  27. Rusin, M., Gospodarek, J. & Nadgórska-Socha, A. (2021). Time-delayed effect of petroleum-derived products in soil and their bioremediation on plant – herbivore interaction. Archives of Environmental Protection, 47, 3,pp. 71-81, DOI:10.24425/aep.2021.138465.
  28. Tanikawa, W. & Shimamoto, T. (2006). Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks. Hydrol. Earth Syst. Sci. Discuss. 3, 1315–1338. DOI:10.5194/hessd-3-1315-2006
  29. Vaccari, M. & Castro, F.D. (2019). Non-conventional stabilisation/solidification treatment of industrial wastes with residual powdered paints. Waste Manag. Res. 37, 1012–1024. DOI:10.1177/0734242X19860178
  30. Vehlow, J. (2012). Reduction of dioxin emissions from thermal waste treatment plants: A brief survey. Rev. Environ. Sci. Biotechnol. 11, 393–405. DOI:10.1007/s11157-012-9296-5
  31. Wang, Z., Sun, Y., Zhang, S. & Wang, Y. (2019). Effect of sodium silicate on Portland cement/calcium aluminate cement/gypsum rich-water system: Strength and microstructure. RSC Adv. 9, 9993–10003. DOI:10.1039/c8ra09901d
  32. Yoon, S., Bhatt, S.D., Lee, W., Lee, H.Y., Jeong, S.Y., Baeg, J.O. & Lee, C.W. (2009). Separation and characterization of bitumen from Athabasca oil sand. Korean J. Chem. Eng. 26, 64–71. DOI:10.1007/s11814-009-0011-3
  33. Young, J.F. (1992). Dense High Strength, Low Permeability Cement Based Materials for Containment. Proc. 1st Intl Symposium, Cement Industry Sol. to Waste Mgt, Canadian Portland Cement Assoc. Toronto pp. 13-22.
  34. Zhang, J. & Bishop, P.L. (2002). Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement. J. Hazard. Mater. 92, 199–212. DOI:10.1016/S0304-3894(02)00019-5
  35. Zhao, T. Zhu, J. & Chi, P. (1999). Modification of Pore Chemicals in evaluation of High-Performance Concrete Permeability. ACI Mater. J. 96: 84 – 89.
Go to article

Authors and Affiliations

Abbas Hadj Abbas
1 2
Abidi Saad Aissa
3
Mohamed Khodja
4
Farad Sagala
5 6
Messaoud Hacini
3

  1. Laboratoire de géologie du Sahara, Université Kasdi Merbah Ouargla, Route de Ghardaia BP 511 Ouargla Algérie.
  2. Department of Chemical and Petroleum Engineering, University of Calgary,
  3. Laboratoire de géologie du Sahara, Université Kasdi Merbah Ouargla, Route de Ghardaia BP 511 Ouargla Algérie
  4. SONATRACH/Institut Algérien du Pétrole, Avenue 1 Novembre 35000 Boumerdès, Algeria
  5. Department of Chemical and Petroleum Engineering, University of Calgary
  6. Department of Energy, Minerals and Petroleum Engineering, Faculty of Applied Sciences and Technology, Mbarara, University of Science and Technology (MUST), Kihumuro Campus, Mbarara, Uganda
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of bulk deposition is an important aspect of assessing ambient air pollution. It contributes significantly to the removal of pollutants from the atmosphere and their transfer to other ecosystems. Thus, it is a reliable determinant of environmental chemistry. Therefore, bulk deposition can be considered useful for tracking the migration path of substances from different sources. The aim of the study carried out at five measurement points in Zabrze and Bytom was to assess the content of selected physico-chemical parameters in bulk deposition. Samples were collected continuously from November 2019 to November 2020. In the collected samples the following were determined: COD, pH, conductivity, dissolved organic carbon, inorganic carbon and total carbon; inorganic anions (Cl-, SO42-, NO3-, NO2-, Br-, PO43-) and cations (Li+, Mg2+, Ca2+, Na+, K+, NH4+), metals and metalloids (Mn, Ni, Co, Cu, Zn, As, Cd, Pb, Cr, and Fe), and carboxylic acids (formic, acetic, oxalic). The obtained test results were statistically processed using Excel, and the normality of data distribution was verified by Shapiro-Wilk test. The results show that pollutants transported in the atmosphere and introduced with precipitation in the Zabrze and Bytom areas are a significant source of area pollution of the region.
Go to article

Bibliography

  1. Azimi, S., Ludwig, A., Thevenot, D.R., & Colin, J.L. (2003). Trace metal determination in total atmospheric deposition in rural and urban areas, Science of the total environment, 308, 1-3, pp. 247–256. DOI:10.1016/S0048-9697(02)00678-2
  2. Czaplicka, M., Jaworek, K., & Wochnik, A. (2014). Determination of aldehydes in wet deposition, Archives of Environmental Protection, 40, 2, pp. 21–31. DOI:10.2478/aep-2014-0011
  3. D'Alessandro, W., Katsanou, K., Lambrakis, N., Bellomo, S., Brusca, L., & Liotta, M. (2013). Chemical and isotopic characterisation of bulk deposition in the Louros basin (Epirus, Greece). Atmospheric research, 132, pp. 399–410. DOI:10.1016/j.atmosres.2013.07.007
  4. EASAC – the European Academies’ Science Advisory Council (2020). Towards a sustainable future: transformative change and post-COVID-19 priorities. A Perspective by EASAC’s Environment Programme, (https://easac.eu/fileadmin/user_upload/EASAC_Perspective_on_Transformative_Change_Web_complete.pdf (12.01.2022)
  5. Fowler, J., Cohen, L., & Jarvis, P. (2013). Practical statistics for field biology, John Wiley & Sons, Hoboken 2013.
  6. Huston, R., Chan, Y.C., Gardner, T., Shaw, G., & Chapman, H. (2009). Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks, Water Research, 43, 6, pp. 1630–1640. DOI:10.1016/j.watres.2008.12.045
  7. IMGW-PIB – Institute of Meteorology and Water Management - National Research Institute (2018). Precipitation chemistry monitoring and assessment of pollutant deposition to the ground in 2016-2018. Results of monitoring studies in the Silesian Voivodeship in 2017 (in Polish), (http://www.katowice.wios.gov.pl/monitoring/informacje/stan2017/opady.pdf (12.01.2022))
  8. Kosior, G., Samecka-Cymerman, A., & Brudzińska-Kosior, A. (2018). Transplanted Moss Hylocomium splendens as a Bioaccumulator of Trace Elements from Different Categories of Sampling Sites in the Upper Silesia Area (SW Poland): Bulk and Dry Deposition Impact, Bulletin of Environmental Contamination and Toxicology, 101, 24, pp. 479–485. DOI:10.1007/s00128-018-2429-y
  9. Kurwadkar, S., Kanel, S.R., & Nakarmi, A. (2020). Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants, Water Environment Research, 92, 10, pp. 1659–1668. DOI:10.1002/wer.1415
  10. Liu, Z., Yang, J., Zhang, J., Xiang, H., & Wei, H. (2019). A bibliometric analysis of research on acid rain, Sustainability, 11, 11, 3077. DOI:10.3390/su11113077
  11. Nowak, A., Korszun-Kłak, K., & Zielonka, U. (2014). Long-Term Measurments of Atmospheric Mercury Species (TGM, TPM) and Hg Deposition in the Silesian Region, Poland: Concept of the Mercury Deposition Coefficient, Archives of Environmental Protection, 40, 3, pp. 43–60. DOI:10.2478/aep-2014-0023
  12. PB18 (test procedure), edition 4, 10.02.2016. The application of ICP-MS in water quality testing.
  13. Pecyna-Utylska, P., Konieczny, T., & Michalski, R. (2021). The influence of sample pH on the determination of selected carboxylic acids by isocratic ion chromatography, Chemistry & Chemical Technology, 15, 3, pp. 319–323. DOI:10.23939/chcht15.03.319
  14. Pęczkowski, G., Szawernoga, K., Kowalczyk, T., Orzepowski, W., & Pokladek, R. (2020). Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia, Sustainability, 12, 11, 4793. DOI:10.3390/su12114793
  15. PN-EN 1484:1999 standard. Water Quality — Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC).
  16. PN-EN 27888:1999 standard. Water Quality — Determination of electrical conductivity.
  17. PN-EN ISO 10304-1:2009 standard. Water Quality — Determination of dissolved anions by liquid chromatography of ions — Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate.
  18. PN-EN ISO 10523:2012 standard. Water Quality — Determination of pH.
  19. PN-EN ISO 11885:2009 standard. Water Quality — Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).
  20. PN-EN ISO 14911:2002 standard. Water Quality — Determination of dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ using ion chromatography — Method for water and waste water.
  21. PN-ISO 15705:2005 standard. Water quality — Determination of the chemical oxygen demand index (ST-COD) — Small-scale sealed-tube method.
  22. Polkowska, Z., Astel, A., Walna, B., Małek, S., Mądrzycka, K., Górecki, T., Siepak, J., & Namieśnik, J. (2005). Chemometric Analysis of Rainwater and Throughfall At Several Sites In Poland, Atmospheric Environment, 39, pp. 837–855. DOI:10.1016/j.atmosenv.2004.10.026
  23. Saadat, S., Rawtani, D., & Hussain, C.M. (2020). Environmental perspective of COVID-19, Science of the Total environment, 728, 138870. DOI:10.1016/j.scitotenv.2020.138870
  24. Sanjeeva, A., & Puttaswamaiah, S.G. (2018). Influence of Atmospheric Deposition and Roof Materials on Harvested Rainwater Quality, Journal of Environmental Engineering 144, 12, 04018121. DOI:10.1061/(ASCE)EE.1943-7870.0001460
  25. Siudek, P., Frankowski, M., & Siepak, J. (2015). Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland. Environmental Science and Pollution Research, 22, 14, pp. 11087–11096. DOI: 10.1007/s11356-015-4356-3
  26. Tositti, L., Pieri, L., Brattich, E., Parmeggiani, S., & Ventura, F. (2018). Chemical characteristics of atmospheric bulk deposition in a semi-rural area of the Po Valley (Italy). Journal of Atmospheric Chemistry, 75, 1, pp. 97–121. DOI: 10.1007/s10874-017-9365-9
  27. Wetherbee, G.A., Benedict, K.B., Murphy, S.F., & Elliott, E.M. (2019). Inorganic nitrogen wet deposition gradients in the Denver-Boulder metropolitan area and Colorado Front Range - Preliminary implications for Rocky Mountain National Park and interpolated deposition maps, Science of the total environment, 691, pp. 1027–1042. DOI:10.1016/j.scitotenv.2019.06.528
Go to article

Authors and Affiliations

Rajmund Michalski
1
ORCID: ORCID
Paulina Pecyna-Utylska
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Reviewers

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more