Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2025 | 51 | 4

Download PDF Download RIS Download Bibtex

Abstract

This study assessed the awareness, understanding, and practices of household waste recycling in high-income and low-income communities in the North of Pretoria, South Africa. A structured questionnaire was administered through face-to-face interviews and a door-to-door survey. A purposive sampling involving 122 participants was carried out. Data were collected from September 2023 to April 2024 and analyzed using descriptive statistics and the Pearson chi-square test. The study area was divided into four sites (A, B, C, and D) based on income levels. At sites A, B, and C (low-income communities), 81.6%, 81.4%, and 75.0 % of participants, respectively, did not separate waste, whereas at Site D (high-income community), 61.5% of the participants did not separate their household waste before disposal. Participants from all the communities were aware of recycling in the following order: Site D (76.9%) >Site C (60.7%) >Site A (60.5%) >Site B (51.2%). However, actual recycling rates remained low, with only 30.7% of high-income and 15.8% to 20.1% of low-income participants partaking in recycling practices. Lack of time and inadequate infrastructure were identified as major obstacles to household waste recycling. Recycling was only carried out when there was a perceived financial benefit. Despite their knowledge of recycling, most participants did not recycle their household waste. Awareness campaigns and incentives ought to be introduced to encourage recycling and boost community participation. The establishment of local recycling centres could enhance engagement in recycling, resulting in employment opportunities.
Go to article

Bibliography

  1. Adeleye, A.A. & Shakantu, W. (2022). The health and environmental impact of plastic waste disposal in South African townships: A review. International Journal of Environmental Research and Public Health, 19, 2, 779-780. DOI:10.3390/ijerph19020779
  2. Amnesty International. (2020). South Africa: Broken and unequal education perpetuating poverty and inequality. https://www.amnesty.org/en/latest/news/2020/02/south-africa-broken-and-unequal-education-perpetuating-poverty-and-inequality (28.03.2025).
  3. Berndak, S. & Attili, A.B. (2017). Consumer attitude and behaviour towards domestic waste recycling in developing countries: A case study. 2,2, DOI.10.4172/2475-7675.1000124
  4. Creswell, J. (2012). Educational research, Pearson Education Incorporated, Boston 2012.
  5. CSIR, (2016). How much do South African households in towns & rural areas recycle? https://researchspace.csir.co.za/dspace/bitstream/handle/10204/9321/Strydom_18309_2016.pd (28/06/24).
  6. Cudjoe, D., Zhu, B., Nketah, E., Wang, H., Chen, W. & Qianqian, Y. (2021). The potential energy and environmental benefits of global recyclable sources. Science of the Total environment, 798, pp.149258. DOI: 10.1016/j.scitotenv.2021.149258
  7. Godfrey, L. (2021). Quantifying economic activity in the informal recycling sector in South Africa. South African Journal of Science, 117, 9/10, pp. 8921. DOI.10.1759/sajs2021/8921
  8. Gumbi, S.E. (2015). Current waste management and minimisation patterns and practices: An exploratory study in the Ekurhuleni metropolitan municipality in South Africa. Master’s Dissertation, University of South Africa, Pretoria, South Africa.
  9. Haywood, L.K., Kwapwata, T., Oelofse, S., Breetzke, G. & Wright, C.Y. (2021). Waste disposal in low-income settlements of South Africa. International Journal of Environmental, 18,15, 8176. DOI: 10.3390/ijerph18158176
  10. Hettiarachhchi, H., Meegoda, J.N. & Ryu, S. (2018). Organic waste buybacks as a viable method to enhance sustainable municipal solid waste management in developing countries. International Journal of Environmental Research and Public Health, 15,11, 2483. DOI:10.3390/ijerph15112483
  11. Ichikowitz, R. & Hattingh, T.S. (2020). Consumer E- waste recycling in South Africa. South African Journal of Industrial Engineering, 31,3, pp. 44-57. DOI:10.7166/31-3-2416
  12. Ikechukwu, E.E. (2015). Assessment of the activities of scavengers in Obio/Akpor local government, Rivers State, Nigeria. Journal of Environmental Protection, 6, pp.272-280. DOI:10.4236/jep.2015.63027
  13. Jalil, E., Grant, D.B., Nicholson, J.D. & Deutz, P. (2016). Reverse logistics in household recycling and waste systems: a symbiosis perspective. Supply Chain Management, 21, 2, pp.245–258. DOI:10.1108/SCM-02-2015-0056
  14. Kirchherr,J., Reike,D. & Hekkert, M. (2017). Conceptualizing the circular economy: an analysis of 114 definitions. Resource, Conservation and Recycling, 127, pp. 221-232. DOI: 10.2139/ssm.3037579
  15. Kubanza, N.S. (2024). Analysing the challenges of solid waste management in low-income communities in South Africa: a case study of Alexandra, Johannesburg. South African Geographical Journal, 107, 2, pp. 169–189. DOI:10.1080/03736245.2024.2356563
  16. Kumari, K., Kumar, S., Rajagopal, V., Khare, A. & Kumar, R. (2019). Emission from open burning of municipal solid waste in India. Environmental Technology, 40,17, pp.2201-2214. DOI:10.1080/0959330.2017.1351489
  17. Liu, M., Tan, S., Zhang, M., He, G., Chen, Z., Zhiwei, F. & Luan, C. (2020). Wastepaper recycling decision system based on material flow analysis and life cycle assessment: a case study of wastepaper recycling from China. Jornal of Environmental Management, 255, 109859. DOI: /10.1016/j.jenvman.2019.109859
  18. Manesh, M.H.K., Davadgaran, S. & Rabeti, A.M. (2024). Gasification potential of municipal solid waste in Iran: Application of life cycle assessment, risk analysis and machine learning. Journal of cleaner production, 434, 140177. DOI:10.1016/j.jclepro.2023.140177
  19. Martin, M., Williams, I.D. & Clark, M. (2006). Social, cultural and structural influences on household waste recycling: A case study. Resources, Conservation and Recycling, 48,4, pp. 357-395. DOI:10.1016/j.resconrec.2005.09.005
  20. Mashilo, D.A. & Mahlangu, M.P. (2022). The socio-economic challenges of Ga-Rankuwa township in post-apartheid South Africa. Journal of African Studies and Development, 14, 1, pp 12-24.
  21. Matshika, E. & Muzenda, E. (2017). Barriers to household organic waste management in South Africa: A review. International Journal of Environmental Science and Development, 8, 6, pp.453-457. DOI:10.18178/ijesd.2017.8.6.1000
  22. Mothiba, M., Moja, S.J. & Loans, C. (2017). A review of the working conditions and health status of waste pickers at some landfills in the city of Tshwane metropolitan municipality, South Africa. Advances in Applied Science Research, 8, 3, pp. 89- 96.
  23. Mpact Recycling, (2023). What do 161 rugby fields and South Africa’s paper recycling have in common? https://thepaperstory.co.za/what-do-161-rugby-fields-and-south-africa’s-paper-recycling-have-in-common/? Utm (28.03.2025).
  24. Mukherji, S.B., Sekiyama, M., Mino, T. & Chaturved, B. (2016). Resident knowledge and willingness to engage in waste management in Delhi, India. Sustainability, 8, 10, 1065. DOI:10.339/su8101065
  25. National Waste Management Strategy (2020). https://www.environment.gov.za/sites/default/files/docs/2020nationalwaste_managementstrategy1.pdf (01.07.2024).
  26. Oberoi, P. (2020). Recycling of Materials for Sustainable Development: Reasons, Approaches, Economics, and Stakeholders of Recycling. [In:] Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T. (eds) Responsible Consumption and Production. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. DOI:10.1007/978-3-319-95726-5_80
  27. Oyekale, A.S. (2018). Determinants of households’ involvement in waste separation and collection for recycling in South Africa. Environment, Development and sustainability, 20, pp. 2343-2371. DOI:10.1007/s10668-017-9993-x
  28. Pakpour, A.H., Zeidi, I.M., Emamjomeh, M.M., Asefzadeh, S. & Pearson, H. (2014). Household waste behaviours Among a community sample in Iran: an application of the theory of planned behaviour. Waste Management, 34, 6, pp. 980-986. DOI:10.1016/j.wasman.2013.10028
  29. Romatex. (2022). Can textile waste be recycled? https://www.romatex.co.za/2022/10/10/ca-textile-waste-be-recycled (27.03.25)
  30. Schoeman, D.C. & Rampedi, I.T. (2022). Drivers of Household recycling behaviour in the city of Johannesburg, South Africa. International Journal of Environmental Research and Public Health, 19, 10, 6229. DOI:10.3390/ijerph19106229
  31. Ssemugabo, C., Wafula, S.T., Lubega, G.B., Ndejjo, R.N., Osuret, J., Halage, A.A. & Musoke, D. (2020). Status of household solid waste management and associated factors in a slum community in Kampala, Uganda. Journal of Environmental and Public Health, 6807630. DO:10.1155/2020/6807630.
  32. Strydom, W.F. (2018). Barriers to household waste recycling: Empirical evidence from South Africa. Recycling, 3,41, pp.1-23. DOI:10.3390/recycling3030041
  33. Turok, I.& Borel-Saladin, J. (2018). The theory and reality of urban slums: pathway-out-of-poverty or cul-de-sacs? Urban Studies, 55, 4, pp. 767-789.DOI:10.1177/0042098016671109
  34. Uddin, S.M.N., Li, Z., Adamowski, J.F., Ulbrich, T., Mang, H.P., Ryndin, R., Norvanchig, J., Lapegue, J., Wriege-Bechthold, A. & Cheng, S. (2015). Feasibility of ‘greenhouse system’ for household greywater treatment in nomadic-cultured communities in peri-urban areas of Ulaanbaatar, Mongolia: way to reduce greywater-borne hazards and vulnerabilities. Journal of Cleaner Production, 114, pp.431–442. DOI:/10.1016/j.jclepro.2015.07.149
  35. Utebay, B., Celik, P. & Cay, A. (2020). Textile waste: Status and perspective. In Textile industry and waste chp 4 pp. 3. Intech open. DOI:10.5772/intechopen.92234
  36. Volschenk, L., Viljoen, K. & Schenck, C. (2021). Socio-economic factors affecting household participation in curb-side recycling programmes: Evidence from Drakenstein Municipality, South Africa. African Journal of Business & Economic Research, 16, 1, pp. 143–167. DOI:10.31920/1750-4562/2021/v16n1a6
  37. Wang, G., Lu, G. & Zhao, J. (2016). Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analysis and bioanalytical tools. Environment Science Pollution Research, 23, pp.16015-16024. DOI:10.1007/s11356-016-6669-2
  38. Weimann, A. & Oni, T. (2019). A systematic review of the health impacts of urban formal settlements and implications for upgrading interventions in South Africa, a rapidly urbanizing middle-income country. International Journal of Environment, Research and Public Health, 16, 19, 3608. DOI:10.3390/ijerph16193608
  39. Widdowson, S.J., Maunder, A. & Read, A. D. (2014). Household Recycling Incentives- do they work? Proceeding of the 20th waste conference 6-10 October 2014. Somerset
  40. William, P.T. (2013). Pyrolysis of waste tyres: A review. Waste management, 33, 8, pp. 1714-1728.DOI:10.1016/j.wasman.2013.05.003
  41. Zhuang, Y., Wu, S., Wang, Y., Wu, W. & Chen, Y. (2007). Source separation of household waste: A case study. Waste Management, 28,10, pp. 2022-2030. DOI:10.1016/j.wasman.2007.08.012
Go to article

Authors and Affiliations

Senzeni Nyathi
1
Liziwe Mugivhisa
1
Mary Oladeji
1
Joshua Olowoyo
2

  1. Sefako Makgatho Health Sciences university, South Africa
  2. Florida Gulf Coast University, United States
Download PDF Download RIS Download Bibtex

Abstract

According to statistics from the Ministry of Environment, Taiwan’s total waste has consistently increased over the past decade. Annual maintenance of public incinerators has led to a reduction in incineration capacity, resulting in the steady accumulation of untreated temporary waste, which negatively impacts the ecological environment and considerably reduces the quality of life for local residents. Previous solutions, such as expanding incineration capacity and coordinating inter-county waste dispatch, have proven insufficient due to the continuous growth in waste volume. This study proposes a predictive method for Taiwan’s total waste, providing accurate forecasts to support proactive planning. Historical waste data from the past decade and forecasts for the next five years were analyzed using the nonlinear gray Bernoulli model ((NGBM(1,1)), which effectively predicts nonlinear trends. To enhance prediction accuracy, the model incorporates parameter optimization through a genetic algorithm (GA) and integrates an indifference zone (IZ) mechanism. Incorporating the IZ reduced the mean absolute percentage error (MAPE) of the NGBM(1,1) model to 9.13%, a 75% improvement over GA alone, while accelerating convergence. By enhancing prediction accuracy and efficiency, the findings of this study enable stakeholders to plan incineration capacity, allocate resources, and manage temporary waste storage more effectively, ultimately addressing waste disposal challenges in Taiwan
Go to article

Bibliography

  1. Adewuyi, A. Y., Adebayo, K. B., Adebayo, D., Kalinzi, J. M., Ugiagbe, U. O., Ogunruku, O. O., Samson, O. A. & Richard, O. (2024). Application of big data analytics to forecast future waste trends and inform sustainable planning. World Journal of Advanced Research and Reviews, 23(1), 2469-2479.
  2. Adu, T. F., Mensah, L. D., Rockson, M. A. D. & Kemausuor, F. (2025). Forecasting municipal solid waste generation and composition using machine learning and GIS techniques: A case study of Cape Coast, Ghana. Cleaner Waste Systems, 10, 100218. DOI:10.1016/j.clwas.2025.100218
  3. Cadini, F., Zio, E. & Petrescu, C. A. (2010). Optimal expansion of an existing electrical power transmission network by multi-objective genetic algorithms. Reliability Engineering & System Safety, 95(3), 173-181. DOI:10.1016/j.ress.2009.09.007
  4. Chang, Y.-H. (2010). Adopting co-evolution and constraint-satisfaction concept on genetic algorithms to solve supply chain network design problems. Expert Systems with Applications, 37(10), 6919-6930. DOI:10.1016/j.eswa.2010.03.030
  5. Chen, C.-I., Chen, H. L. & Chen, S.-P. (2008). Forecasting of foreign exchange rates of Taiwan’s major trading partners by novel nonlinear Grey Bernoulli model NGBM(1,1). Communications in Nonlinear Science and Numerical Simulation, 13(6), 1194-1204. DOI:10.1016/j.cnsns.2006.08.008
  6. Chen, M.-H. (2020). Analysis of the amount of garbage generated and population structure in Taiwan's counties and cities [Master’s thesis, National Central University].
  7. Deng, J. (1989). Introduction to grey system theory. The Journal of grey system, 1(1), 1-24.
  8. Evans, M. (2014). An alternative approach to estimating the parameters of a generalised Grey Verhulst model: An application to steel intensity of use in the UK. Expert Systems with Applications, 41(4), 1236-1244. DOI:10.1016/j.eswa.2013.08.006
  9. Huang, Y., Lan, Y., Thomson, S. J., Fang, A., Hoffmann, W. C. & Lacey, R. E. (2010). Development of soft computing and applications in agricultural and biological engineering. Computers and Electronics in Agriculture, 71(2), 107-127. DOI:10.1016/j.compag.2010.01.001
  10. Izquierdo-Horna, L., Kahhat, R. & Vázquez-Rowe, I. (2022). Reviewing the influence of sociocultural, environmental and economic variables to forecast municipal solid waste (MSW) generation. Sustainable Production and Consumption, 33, 809-819.
  11. Ke, Y.-P. (2022). Combination and Selection of Waste Treatment Methods for Local Governments in Consideration of Carbon Reduction [Master’s thesis, National Taiwan University].
  12. Konyalıoğlu, A. K., Ozcan, T. & Bereketli, I. (2025). Forecasting medical waste in Istanbul using a novel nonlinear grey Bernoulli model optimized by firefly algorithm. Waste Management & Research, 43(5), 726-737. DOI:10.1177/0734242x241271065
  13. Lin, W.-C. (2012). The Feasibility Research of Gray Theory on Retailer's Sales Forecasting Improvement in ST Company [Master’s thesis, National Yang Ming Chiao Tung University].
  14. Oroye, O. A., Akintade, J. V. & Oroye, B. E. (2024, 26-28 Nov. 2024). Waste Generation Forecast and Prediction Analysis using Exponential Smoothing Model. 2024 IEEE 5th International Conference on Electro-Computing Technologies for Humanity (NIGERCON),
  15. Ou, S. L. (2012). Forecasting agricultural output with an improved grey forecasting model based on the genetic algorithm. Computers and Electronics in Agriculture, 85, 33-39. DOI:10.1016/j.compag.2012.03.007
  16. Soni, U., Roy, A., Verma, A. & Jain, V. (2019). Forecasting municipal solid waste generation using artificial intelligence models—a case study in India. SN Applied Sciences, 1(2), 162. DOI:10.1007/s42452-018-0157-x
  17. Statistics Department, M. o. E. The total amount of general waste generated nationwide (https://data.moenv.gov.tw/dataset/detail/STAT_P_126
  18. Sullivan, D. W. & Wilson, J. R. (1989). Restricted Subset-Selection Procedures for Simulation. Operations Research, 37(1), 52-71DOI:10.1287/opre.37.1.52
  19. Wang, F., Yu, L. & Wu, A. (2021). Forecasting the electronic waste quantity with a decomposition-ensemble approach. Waste Management, 120, 828-838. DOI:10.1016/j.wasman.2020.11.006
  20. Xu, Y., Lin, T., Du, P. & Wang, J. (2024). An innovative interval grey model for construction waste forecasting. Applied Mathematical Modelling, 126, 22-51. DOI:10.1016/j.apm.2023.10.013
  21. Zeng, B., Li, H., Mao, C. W. & Wu, Y. (2023). Modeling, prediction and analysis of new energy vehicle sales in China using a variable-structure grey model. Expert Systems with Applications, 213. DOI:10.1016/j.eswa.2022.118879
  22. Zhang, C., Dong, H., Geng, Y., Liang, H. & Liu, X. (2022). Machine learning based prediction for China's municipal solid waste under the shared socioeconomic pathways. Journal of environmental management, 312, 114918. DOI:10.1016/j.jenvman.2022.114918
  23. Zhou, H. M., Dang, Y. G., Yang, Y. J., Wang, J. J. & Yang, S. W. (2023). An optimized nonlinear time-varying grey Bernoulli model and its application in forecasting the stock and sales of electric vehicles. Energy, 263. DOI:10.1016/j.energy.2022.125871
Go to article

Authors and Affiliations

Shih-Hsien Tseng
1
Ying-Ling Wu
1
Thi Ha Trang Duong
1

  1. National Taiwan University of Science and Technology, Taiwan
Download PDF Download RIS Download Bibtex

Abstract

Actions aimed at reducing the harmful impact of industry on the environment are currently of great importance. The article presents a solution for the simultaneous reduction of dust emission and removal of sewage from a municipal combined heat and power plant. The research focused on injecting treated wastewater (or its mixture) originating from the wet flue gas desulfurization (WFGD) system into a flue gas stream upstream of an electrostatic precipitator (ESP) to clean emissions from a pulverized coal boiler. The installation utilized the waste heat of the flue gases to completely vaporize the injected liquid, while simultaneously improving ESP efficiency by conditioning the flue gases. Tests were conducted on a system capable of injecting up to 6 m³/h of liquid into a flue gas flow with an average volume of approximately 125,000 Nm³/h. Throughout the testing phase, the conditioning liquid was confirmed to evaporate completely. No increases in pollutant concentrations - such as SO2, HCl, HF, or NH3 – were observed in exhaust gases at injection temperatures of around 200°C. Additionally, a decrease in particulate matter downstream of the ESP was recorded following the liquid injection. The findings indicate that this installation allows for effective disposal of wastewater streams.Moreover, liquid injection into flue gases can improve ESP performance without extensive or costly upgrades, which is especially beneficial for existing industrial plants.
Go to article

Bibliography

  1. Amann, M., Kiesewetter, G., Schöpp, W., Klimont, Z., Winiwarter, W., Cofala, J., Rafaj, P., Höglund-Isaksson, L., Gomez-Sabriana, A., Heyes, Ch., Purohit, P., Borken-Kleefeld, J., Wagner, F., Sander, R., Fagerli, H., Nyiri, A., Cozzi, L., Pavarini, C. (2020). Reducing global air pollution: the scope for further policy interventions. Philosophical Transaction Royal Society, A 378: 20190331. http://dx.doi.org/10.1098/rsta.2019.0331
  2. Baldrey K. E. et al. (1997). Duke Energy’s Operating Experience with ADA-ES Flue Gas Conditioning Technology on a Cold-Side ESP. Power–Gen’97 International Conference, December 9-11, Dallas.
  3. Battles R. L., Lentz M. J. and Wright R. A. (1998). SO3 Flue Gas Conditioning System with Catalytic Converter Temperature Control by Injection of Water. Pat. USA No 5 791 268
  4. Brown J. R. (1998), Pure Air’s Advanced Flue Gas Desulfurization Clean Coal Project, Environmental Progress, Vol 17, nr 3, pp. 173-182.
  5. Chenghang, Z., Shen, Z., Yan, P., Zhu, W., Chang, Q., Gao, X., Luo, Z., Ni, M., Cen, K. (2017). Particle removal enhancement in a high-temperature electrostatic precipitator for glass furnace, Powder Technology, 319, pp.154–162. doi: 10.1016/j.powtec.2017.06.017.
  6. Ciesielczuk, T., Rosik-Dulewska, Cz. (2023). Decomposition dynamics of cooking-oil-soaked waste paper in media with low inorganic nitrogen content, Archives of Environmental Protection, Vol. 49 no. 1 pp. 85–93. DOI 10.24425/aep.2023.144741
  7. Durham M. D. et al. (1998). 2nd Generation Flue Gas Conditioning for Enhanced ESP Performance on Low-Sulphur Coal. Power–Gen’98 International Conference, December 9, Orlando Florida.
  8. EU Decisions Commission Implementing Decision (EU) 2017/1442 of 31 July 2017 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for large combustion plants (notified under document C(2017) 5225), in Polish
  9. EU Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010, on industrial emissions (integrated pollution prevention and control), Official J Europ Union, (2010), L 334/17).
  10. Gostomczyk M. A. (2007). New technologies and techniques for flue gas desulphurization. Energetyka Cieplna i Zawodowa. nr 1, pp. 45-47 (in Polish).
  11. Hilborn J. W. (1993). Traditional Versus Non-traditional Flue Gas Conditioning for Electrostatic Precipitators. Proc. 10th Particulate Control Symposium and 5th ICESP, Vol. 2, April 5-8, Washington DC.
  12. Hill H., Heermann M. (2014) Zero Liquid Discharge Effluent Guidelines Compliance Strategies for Coal-Fired Power Plants’ FGD Wastewater, Presented at Power-Gen, International Conference, December 7-11, Orlando.
  13. Jędrusik M., Łuszkiewicz D., Świerczok A. (2021) Methods to reduce mercury and ni-trogen oxides emissions from coal combustion processes. In: Environmental emissions / ed. Richard Viskup. London : IntechOpen, pp. 1-23. doi: 10.5772/intechopen.92342
  14. Katz J. (1981) The art of electrostatic precipitation. S&S Printing Company, INC Pittsburgh, Pennsylvania.
  15. Klyta, J., Janoszka, K., Czaplicka, M., Rachwał, T. (2023). Co-combustion of wood pellet and waste in residential heating boilers – comparison of carbonaceous compound emission, Archives of Environmental Protection, Vol. 49 no. 3 pp. 100–106. DOI 10.24425/aep.2023.147332
  16. Krigmont H. V., Coe E. L. (1990). Experience in Conditioning Electrostatic Precipitators. In: 4th International Conference on Electrostatic precipitation, Beijing, China, pp 597-609.
  17. Lund C. R., Selby M., Cottingham C. (1998). Dual FGC Solving ESP Performance Problems. Proc. 7th ICESP, Sep. 20-25, Kyongju, Korea.
  18. MME&IN Regulation, Regulation of the minister of maritime economy and inland navigation of 12 July 2019, on substances particularly harmful to the aquatic environment and on the conditions to be met when discharging sewage into waters or soil, as well as when discharging rainwater or meltwater into waters or into water facilities, in Polish.
  19. Navarrete, B., Alonso‐Fariñas, B., Lupión, M., Cañadas, L. (2015). Effect of Flue Gas Conditioning on the Cohesive Forces in Fly Ash Layers in Electrostatic Precipitation. Environmental Progress & Sustainable Energy, Vol.34, No.5. doi: 10.1002/ep12133
  20. Parker K. R. et all (1997) Applied Electrostatic Precipitation. Blackie Academic & Professional, London.
  21. Pilco-Nuñez, A., Hinostroza-Antonio, E., Diaz-Bravo, P., Palacios-Salvador, W., Solis-Toledo, R., Baldeon-Romero, J. (2024), Removal of microplastics by electrocoagulation, Archives of Environmental Protection, Vol. 50 no. 4 pp. 64–71. DOI 10.24425/aep.2024.152896
  22. Porle K., Bradburn K., Bader P. (1996). FGC as a Means for Cost – Effective ESPs for Low Sulphur Coals. Proc. 6th ICESP, 18-21 June, Budapest
  23. Primus, A., Buntner, D., Rosik-Dulewska, Cz., Chmielniak, T. (2024). Energy efficiency of waste gasification plants in the national municipal waste management system, Archives of Environmental Protection, Vol. 50 no. 4 pp. 93–103. DOI 10.24425/aep.2024.152899
  24. Schwab J. J. and Hawks R. L. (2000). Detached Plume Abatement Method. Pat. USA No 6 060 030.
  25. Shanthakumar S., Singh D.N., and Phadke R.C. (2009). The Effect of Dual Flue Gas Conditioning on Fly Ash Characteristics, Journal of Testing and Evaluation, Vol. 37, No. 6.
  26. Shuangchen, M., Jin, Ch., Gongda, Ch., Weijing, Y., Sijie, Z. (2016) Research on desulfurization wastewater evaporation: Present and future perspectives. Renewable and Sustainable Energy Reviews, 58, pp. 1143-1151. doi: 10.1016/j.rser.2015.12.252.
  27. Starzomska, A., Strużewska, J. (2024). A six-year measurement-based analysis of traffic-related particulate matter pollution in urban areas: the case of Warsaw, Poland (2016-2021), Archives of Environmental Protection, Vol. 50 no. 2 pp. 75–84. DOI.10.24425/aep.2024.150554
  28. Świerczok A., Jędrusik M., Łuszkiewicz D. (2020). Reduction of mercury emissions from combustion processes using electrostatic precipitators. Journal of Electrostatics, 104, pp. 1-5. doi:10.1016/j.elstat.2020.103421
  29. Tong, T., Elimelech, M. (2016). The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions, Environmental Science & Technology, 50, pp. 6846−6855, DOI: 10.1021/acs.est.6b01000
  30. Wang, Ch., Miao, X., Fang, M., Chen, Y., Jin, T. (2024). The improvement of Beijing ambient air quality resulting from the upgrade of vehicle emission standards, Archives of Environmental Protection, Vol. 50 no. 3 pp. 109–121. DOI:10.24425/aep.2024.151690
  31. Wolska, M., Kabsch-Korbutowicz, M., Solipiwko-Pieścik, A. (2024). Assessing the feasibility of using ultrafiltration to recirculate backwash water in a surface water treatment plant, Archives of Environmental Protection, Vol. 50 no. 2 pp. 3–13. DOI.10.24425/aep.2024.150547
Go to article

Authors and Affiliations

Arkadiusz Świerczok
1
Dariusz Łuszkiewicz
1
ORCID: ORCID
Krzysztof Mościcki
1
ORCID: ORCID
Maria Jędrusik
1
ORCID: ORCID
Artur Sobczak
2

  1. Politechnika Wrocławska, Poland
  2. Zespół Elektrociepłowni Wrocławskich KOGENERACJA S.A., Poland
Download PDF Download RIS Download Bibtex

Abstract

Wastewater treatment plants (WWTPs) are significant sources of greenhouse gas (GHG) emissions, particularly methane (CH4) and nitrous oxide (N2O). This study compares two widely used carbon footprint (CF) calculation tools, CFCT and ECAM, and validates their results with a self-developed Validation Tool. The findings reveal substantial differences in CF estimates, with ECAM reporting emissions more than twice as high as those computed by CFCT. The Validation Tool, which incorporates site-specific empirical emission factors (EFs), estimates emissions approximately 80% lower than the other tools. The analysis identifies key methodological limitations, including the oversimplification of N2O emissions in CF models, inconsistencies in EF selection, and the lack of standardized validation methodologies. The study underscores the need for refining CF methodologies by integrating real-world operational data and establishing harmonized validation frameworks to enhance the reliability of emissions accounting.
Go to article

Bibliography

  1. Asadi, A., Verma, A., Yang, K., & Mejabi, B. (2016). Wastewater treatment aeration process optimization: A data mining approach. Journal of Environmental Management, 203, 630–639. https://doi.org/10.1016/j.jenvman.2016.07.047
  2. Awaitey, A. (2021). Carbon footprint of Finnish wastewater treatment plants. Master's Programme in Water and Environmental Engineering (WAT). Aalto Univerity – School of Engineering. https://aaltodoc.aalto.fi/items/ef9c9429-deb3-45d5-9f10-974bf481d394
  3. Burchart, D., Zawartka, P. (2023). Determinants of environmental assessment of Polish individual wastewater treatment plants in a life cycle perspective. Archives of Environmental Protection. 10.24425/aep.2019.128640.
  4. Carbon Footprint Calculation Tool (CFCT). (2014). VA-teknik Södra. [software] Retrieved on October 3, 2024 from https://va-tekniksodra.se/2014/11/carbonfootprint-calculation-tool-for-wwtps-now-available-in-english/
  5. Carbon Footprint Calculation Tool (CFCT). (2024). VA-teknik Södra. [software] Retrieved on November 3, 2024 from https://va-tekniksodra.se/wp-content/uploads/2014/11/Calculation-Tool-Carbon-Footprint-Wastewater-Treatment-Plants.xls
  6. De Haas, D., & Andrews, J. (2022). Nitrous oxide emissions from wastewater treatment - Revisiting the IPCC 2019 refinement guidelines. Environmental Challenges, 8, 100557. https://doi.org/10.1016/j.envc.2022.100557
  7. Faragò, M., Damgaard, A., Rebsdorf, M., Nielsen, P. H., & Rygaard, M. (2022). Challenges in carbon footprint evaluations of state-of-the-art municipal wastewater resource recovery facilities. Journal of Environmental Management, 320, 115715. https://doi.org/10.1016/j.jenvman.2022.115715
  8. Fighir, D., Teodosiu, C., & Fiore, S. (2019). Environmental and Energy assessment of municipal wastewater treatment plants in Italy and Romania: a comparative study. Water, 11(8), 1611. https://doi.org/10.3390/w11081611
  9. Foley, J., De Haas, D., Yuan, Z., & Lant, P. (2010). Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Research, 44(3), 831–844. https://doi.org/10.1016/j.watres.2009.10.033
  10. Huang, Y., Meng, F., Liu, S., Sun, S., & Smith, K. (2022). China’s enhanced urban wastewater treatment increases greenhouse gas emissions and regional inequality. Water Research, 230, 119536. https://doi.org/10.1016/j.watres.2022.119536
  11. Intergovernmental Panel on Climate Change. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Guidelines for wastewater treatment and discharge (Vol. 5, Chapter 6). https://www.ipccnggip.iges.or.jp/public/2019rf/index.html
  12. Jiménez-Paute, R., Hidalgo, M., Guaya, D., & Martí-Herrero, J. (2025). Performance of a low-cost full-scale wastewater treatment system: Tubular digesters combined with granular filtration for domestic wastewater in the Ecuadorian Amazon. Journal of Water Process Engineering, 69, 106797. https://doi.org/10.1016/j.jwpe.2024.106797
  13. Lee, H. and Romero, J. eds. (2023). Climate Change 2014: Sixth Assessment Report (AR6). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, https://www.ipcc.ch/report/ar6/syr/
  14. Lotfikatouli, S., Pan, Q., Wang, M., Russo, F. M., Gobler, C. J., & Mao, X. (2024). Effective nitrogen removal from onsite wastewater using a sequencing aerated biofilm reactor. Journal of Water Process Engineering, 60, 105132. https://doi.org/10.1016/j.jwpe.2024.105132
  15. Maktabifard, M., Awaitey, A., Merta, E., Haimi, H., Zaborowska, E., Mikola, A., & Mąkinia, J. (2021). Comprehensive evaluation of the carbon footprint components of wastewater treatment plants located in the Baltic Sea region. The Science of the Total Environment, 806, 150436. https://doi.org/10.1016/j.scitotenv.2021.150436
  16. Massara, T. M., Malamis S., Guisasola A., Baeza J. A., Noutsopoulos C., Katsou E. (2017). A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Science of The Total Environment, Volumes 596–597, 2017, Pages 106-123, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2017.03.191
  17. Nejad, A. (2020). Carbon Footprints for wastewater treatment plants Master thesis within environmental science. University of Gothenburg - Department of Biological And Environmental Sciences. https://cms.it.gu.se/infoglueDeliverWorking/digitalAssets/1779/1779974_master-thesis-romeyseh-aryan-nejad_final-version.pdf
  18. Pachauri, R.K and Meyer, L. A. eds. (2014). Climate Change 2014: Fifth Assessment Report (AR5). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC https://www.ipcc.ch/report/ar5/syr/
  19. Pachauri, R.K and Reisinger, A. eds. (2007). Climate Change 2007: Fourth Assessment Report (AR4). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, https://www.ipcc.ch/report/ar4/syr/
  20. Saidan, M., Khasawneh, H. J., Aboelnga, H., Meric, S., Kalavrouziotis, I., Jasem, A. S. H. et al. (2019). Baseline carbon emission assessment in water utilities in Jordan using ECAM tool. Journal of Water Supply Research and Technology—AQUA, 68(6), 460–473. https://doi.org/10.2166/aqua.2019.040
  21. Smith, K., Guo, S., Zhu, Q., Dong, X., & Liu, S. (2019). An evaluation of the environmental benefit and energy footprint of China’s stricter wastewater standards: Can benefit be increased? Journal of Cleaner Production, 219, 723–733. https://doi.org/10.1016/j.jclepro.2019.01.204
  22. Song, C., Zhu, J., Willis, J. L., Moore, D. P., Zondlo, M. A., & Ren, Z. J. (2024). Oversimplification and misestimation of nitrous oxide emissions from wastewater treatment plants. Nature Sustainability, 7(10), 1348–1358. https://doi.org/10.1038/s41893-024-01420-9
  23. Szaja A, Bartkowska I. Implementation of solidified carbon dioxide to anaerobic co-digestion of municipal sewage sludge and orange peel waste. Archives of Environmental Protection. 2024;50:72–79. doi:10.24425/aep.2024.149433
  24. Tian, Y., Liu, S., Guo, Z., Wu, N., Liang, J., Zhao, R. et al. (2022). Insight into Greenhouse Gases Emissions and Energy Consumption of Different Full-Scale Wastewater Treatment Plants via ECAM Tool. International Journal of Environmental Research and Public Health, 19(20), 13387. https://doi.org/10.3390/ijerph192013387
  25. Water and Wastewater Companies for Climate Mitigation (WaCCliM). (2024). Energy Performance and Carbon Emissions Assessment and Monitoring Tool (ECAM). [software]. https://climatesmartwater.org/ecam/
  26. Wei, R., Hu, Y., Yu, K., Zhang, L., Liu, G., Hu, C. et al. (2024). Assessing the determinants of scale effects on carbon efficiency in China’s wastewater treatment plants using causal machine learning. Resources Conservation and Recycling, 203, 107432. https://doi.org/10.1016/j.resconrec.2024.107432
  27. WRI, WBCSD. (2014). World Resources Institute and World Business Council for Sustainable Development, Greenhouse Gas Protocol. A Corporate Accounting and Reporting Standard REVISED EDITION. https://ghgprotocol.org/sites/default/files/standards/ghg-protocol-revised.pdf
  28. Zhang, X., Ma, G., Chen, T., Yan, C., Chen, Y., Wang, Q. et al. (2024). Towards carbon-neutral biotechnologies for rural wastewater: A review of current treatment processes and future perspectives. Journal of Water Process Engineering, 58, 104773. https://doi.org/10.1016/j.jwpe.2024.104773
Go to article

Authors and Affiliations

Paulina Szulc-Kłosińska
1
ORCID: ORCID
Ewa Zaborowska
2
Jacek Mąkinia
2
Zbysław Dymaczewski
1

  1. Poznań University of Technology, PUT, Poland
  2. Gdańsk University of Technology, GUT, Poland
Download PDF Download RIS Download Bibtex

Abstract

The utilization of phosphogypsum (PG) plays a critical role in promoting the high-quality development of the phosphorus chemical industry. To achieve large-scale, systemic and effective use of PG, researchers worldwide have conducted extensive studies. In this work, 263 articles related to PG utilization published between 1993 and 2023 were retrieved from the Web of Science Core Collection database. Using bibliometric methods and large-scale statistical analysis, a knowledge map of research on PG utilization was generated with the aid of CiteSpace visualization software. This analysis identified the most influential regions, institutions, authors, journals, keywords, and references within the field. Cluster analysis revealed that research primarily focuses on “fly ash”, “hemihydrate phosphogypsum”, “resource efficiency”, and “carbonization products”. Current research hotspots, identified through co-citation analysis, include: (1) the preparation of calcium sulfoaluminate cement, (2) the production of carbonation products, and (3) the synthesis of hemihydrate phosphogypsum. Future research directions are proposed in the following areas: (1) cement and retardants, (2) construction and filling materials, (3) soil improvement and ecological restoration, and (4) phosphorus fertilizer production. The results of this review may provide valuable guidance for researchers and practitioners in this field.The adsorption kinetics of sulfamethoxazole on the most effective adsorbent, CHS1a, was described using the pseudo-second-order kinetic model and the multi-center Langmuir adsorption model. CHS1a composite can be considered a promising adsorbent for the removal of sulfamethoxazole from water.
Go to article

Bibliography

  1. Agrawal, R., Bhagia,S., Satlewal, A. & Ragauskas, A. J. (2023). Urban mining from biomass, brine, sewage sludge, PG and e-waste for reducing the environmental pollution: Current status of availability, potential, and technologies with a focus on LCA and TEA. Environmental Research, 224. DOI:10.1016/j.envres.2023.115523.
  2. Akfas, F., Elghali, A., Aboulaich,A., Munoz, M., Benzaazoua, M. & Bodinier, J.-L. (2024). Exploring the potential reuse of PG: A waste or a resource? Science of the Total Environment, 908. DOI:10.1016/j.scitotenv.2023.168196.
  3. Akın Altun, İ. & Sert,Y. (2004). Utilization of weathered PG as set retarder in Portland cement. Cement and Concrete Research, 34, 677-680. DOI:10.1016/j.cemconres.2003.10.017.
  4. Altas, L., Balkaya,N. & Cesur,H. (2017). Pb(II) Removal from Aqueous Solution and Industrial Wastewater by Raw and Lime-Conditioned PG. International Journal of Environmental Research, 11, 111-123. DOI:10.1007/s41742-017-0012-8.
  5. Azam, A., Ahmed, A., Kamran, M. S. Hai, L., Zhang, Z. & Ali, A. (2021). Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace. Renewable & Sustainable Energy Reviews, 150. DOI:10.1016/j.rser.2021.111460.
  6. Bilal, E., Bellefqih, H., Bourgier, M. S.., Mazouz, H., Dumitras, D.-G., Bard, F., Laborde, M., Caspar, J. P., Guilhot, B., Iatan, E.-L., Bounakhla, M., Iancu,M.A., Marincea, S., Essakhraoui, M., Li, B., Diwa, R.R., Ramirez, J.D., Chernysh, Y., Chubur,V., Roubik, H., Schmidt, H., Beniazza, R., Canovas, C.R., Nieto, J.M. & Haneklaus, N. (2023). PG circular economy considerations: A critical review from more than 65 storage sites worldwide. Journal of Cleaner Production, 414. DOI:10.1016/j.jclepro.2023.137561.
  7. Bossolani, J. W., Crusciol, C. A. C. Garcia, A., Moretti, L.G., Portugal, J.R., Rodrigues, V.A., Fonseca, M.d.A.d, Calonego, J.C., Amado, T.J.C. & Reis, A.R.d. (2021). Long-Term Lime and PG Amended-Soils Alleviates the Field Drought Effects on Carbon and Antioxidative Metabolism of Maize by Improving Soil Fertility and Root Growth. Frontiers in Plant Science, 12. DOI:10.3389/fpls.2021.650296.
  8. Cai, Q., Jiang, J., Ma, B., Shao,Z., Hu,Y., Qian,B. & Wang,L. (2021). Efficient removal of phosphate impurities in waste PG to produce cement. Science of the Total Environment, 780. DOI:10.1016/j.scitotenv.2021.146600.
  9. Cao, W., Yi, W., Peng, J., Li,G. & Yin, S. (2022a). Preparation of anhydrite from PG: Influence of phosphorus and fluorine impurities on the performances. Construction and Building Materials, 318. DOI:10.1016/j.conbuildmat.2021.126021.
  10. Cao, W., Yi, W., Peng, J., Li, J. & Yin, S.. (2022b). Recycling of PG to prepare gypsum plaster: Effect of calcination temperature. Journal of Building Engineering, 45. DOI:10.1016/j.jobe.2021.103511.
  11. Cao, Y., Cui, Y., Yu, X., Li, T., Chang, I.S. & Wu, J. (2021). Bibliometric analysis of PG research from 1990 to 2020 based on literature and patents. Environmental Science and Pollution Research, 28, 66845-66857. DOI:10.1007/s11356-021-15237-y.
  12. Capasso, I., Pappalardo, L., Romano, R.A. & Iucolano, F. (2021). Foamed gypsum for multipurpose applications in building. Construction and Building Materials, 307. DOI:10.1016/j.conbuildmat.2021.124948.
  13. Chen, C. & Leydesdorff, L. (2014). Patterns of Connections and Movements in Dual-Map Overlays: A New Method of Publication Portfolio Analysis. Journal of the Association for Information Science and Technology, 65, 334-351. DOI:10.1002/asi.22968.
  14. Chen, L., Yang, L. & Cao, J. (2023a). Utilization of PG to synthesize α-hemihydrate gypsum in H3PO4-H2O solution. Construction and Building Materials, 368. DOI:10.1016/j.conbuildmat.2023.130453.
  15. Chen, Q., Sun, S., Wang, Y., Zhang, Q., Zhu, L. & Liu, Y. (2023b). In-situ remediation of PG in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment. Chemosphere, 313. DOI:10.1016/j.chemosphere.2022.137412.
  16. Chen, Q., Zhang, Q., Qi, C., Fourie, A. & Xiao, C. (2018). Recycling PG and construction demolition waste for cemented paste backfill and its environmental impact. Journal of Cleaner Production, 186, 418-429. DOI:10.1016/j.jclepro.2018.03.131.
  17. Chernysh, Y., Yakhnenko, O., Chubur, V. & Roubik, H. (2021). PG Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Applied Sciences-Basel, 11. DOI:10.3390/app11041575.
  18. Cui, Y., Bai, J., Chang, I.S. & Wu, J. (2024). A systematic review of PG recycling industry based on the survey data in China - applications, drivers, obstacles, and solutions. Environmental Impact Assessment Review, 105. DOI:10.1016/j.eiar.2023.107405.
  19. Degirmenci, N. (2008). The use of waste PG and natural gypsum in adobe stabilization. Construction and Building Materials, 22, 1220-1224. DOI:10.1016/j.conbuildmat.2007.01.027.
  20. Değirmenci, N. (2008). Utilization of PG as raw and calcined material in manufacturing of building products. Construction and Building Materials, 22, 1857-1862. DOI:10.1016/j.conbuildmat.2007.04.024.
  21. Degirmenci, N., Okucu, A. & Turabi, A. (2007). Application of PG in soil stabilization. Building and Environment, 42, 3393-3398. DOI:10.1016/j.buildenv.2006.08.010.
  22. Ding, W., Chen, Q., Sun, H. & Peng, T. (2019). Modified PG sequestrating CO2 and characteristics of the carbonation product. Energy, 182, 224-235. DOI:10.1016/j.energy.2019.05.220.
  23. Dong, M., Li, J.S., Lang, L., Chen, X., Jin,J. & Ma, W. (2023). Recycling thermal modified PG in calcium sulfoaluminate cement: Evolution of engineering properties and micro-mechanism. Construction and Building Materials, 373. DOI:10.1016/j.conbuildmat.2023.130823.
  24. Elbagory, M., Shaker, E.M., El-Nahrawy, S., Omara, A.E-D. & Khalifa, T.H. (2024). The Concurrent Application of PG and Modified Biochar as Soil Amendments Influence Sandy Soil Quality and Wheat Productivity. Plants-Basel, 13. DOI:10.3390/plants13111492.
  25. Fujimoto, S., Tsuda, T., Nakada, T., Murayama, N. & Shibata, J. (2013). Recovery of Rare Earth from Phosphate Gypsum. Kagaku Kogaku Ronbunshu, 39, 399-404. DOI:10.1252/kakoronbunshu.39.399.
  26. Garg, M., Jain, N. & Singh, M. (2009). Development of alpha plaster from PG for cementitious binders. Construction and Building Materials, 23, 3138-3143. DOI:10.1016/j.conbuildmat.2009.06.024.
  27. Geraldo, R. H., Costa, A. R. D., Kanai, J., Silva, J.S., Souza, J.D., Andrade, H.M.C., Goncalves, J.P., Fontanini, P.S.P. & Camarini, G. (2020). Calcination parameters on PG waste recycling. Construction and Building Materials, 256. DOI:10.1016/j.conbuildmat.2020.119406.
  28. Guan, Y., Gao, Y., Sun, R., Won, M.C. & Ge, Z. (2017). Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements. Frontiers of Structural and Civil Engineering, 11, 338-345. DOI:10.1007/s11709-017-0411-0.
  29. He, Y., Li, X., Zhu, H. & Ke, B. (2023). A microscopic mechanism of efflorescence on hemihydrate gypsum: Insight into the formation and diffusion of sodium impurities in hemihydrate gypsum crystals. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 674. DOI:10.1016/j.colsurfa.2023.131873.
  30. Hu, N., Kong, D., Wang, L., Zhou, S., Han, Y., Feng, J., Shu, J., Liu, A., Ni, W. & Khan, N. (2024). Experimental design, mechanical performance and mechanism analysis of C30 PG-based concrete. Construction and Building Materials, 443. DOI:10.1016/j.conbuildmat.2024.137673.
  31. Idboufrade, A., Bouargane, B., Ennasraoui, B., Biyoune, M.G., Bachar, A., Bakiz, B., Atbir, A. & Mançour-Billah, S. (2021). PG Two-Step Ammonia-Carbonation Resulting in Ammonium Sulfate and Calcium Carbonate Synthesis: Effect of the Molar Ratio OH−/Ca2+ on the Conversion Process. Waste and Biomass Valorization, 13, 1795-1806. DOI:10.1007/s12649-021-01600-0.
  32. Jarosiński, A. (1994). Properties of anhydrite cement obtained from apatite PG. Cement and Concrete Research, 24, 99-108. DOI:10.1016/0008-8846(94)90090-6.
  33. Jia, R., Wang, Q. & Luo, T. (2021). Reuse of PG as hemihydrate gypsum: The negative effect and content control of H3PO4. Resources, Conservation and Recycling, 174. DOI:10.1016/j.resconrec.2021.105830.
  34. Jiang, G., Wu, A., Wang, Y. & Lan, W. (2018). Low cost and high efficiency utilization of hemihydrate PG: Used as binder to prepare filling material. Construction and Building Materials, 167, 263-270. DOI:10.1016/j.conbuildmat.2018.02.022.
  35. Jiang, G., Wu, A., Wang, Y., Wang, Y. & Li, J. (2022). Determination of utilization strategies for hemihydrate PG in cemented paste backfill: Used as cementitious material or aggregate. Journal of Environmental Management, 308. DOI:10.1016/j.jenvman.2022.114687.
  36. Jin, Y., Yang, D., Wu, Y., Zhou, F., Yu, J., Chi, R. & Xiao, C. (2024). Preparation of Biofertilizer with PG and Straw: Microbial Community Changes and Plant Growth Effects. Journal of Soil Science and Plant Nutrition, 24, 3873-3888. DOI:10.1007/s42729-024-01806-w.
  37. Jin, Z., Cui, C., Wan, Z., Su, Y., He, X., Ma, B., Zhi, Z., Chen, S. & Wang, B. (2023). Preparation of eco-friendly functional lightweight gypsum: Effect of three different lightweight aggregates. Construction and Building Materials, 400. DOI:10.1016/j.conbuildmat.2023.132875.
  38. Kumar, S. (2002). A perspective study on fly ash–lime–gypsum bricks and hollow blocks for low-cost housing development. Construction and Building Materials, 16, 519-525. DOI:10.1016/S0950-0618(02)00034-X.
  39. Kwang-Hyun, B. (2003). Study on Re-utilization of Purified PG for Fertilizer. Journal of the Korean Society of Mineral and Energy Resources Engineers, 40, 25-32.
  40. Li, C., Feng, Q., Sun, K., Deng, J., Lang, W., Yang, Z., Liu, H., Liu, W. & Yuan, S. (2025). Enhanced carbon sequestration via PG utilization in conjunction with concrete wastewater treatment. Separation and Purification Technology, 357. DOI:10.1016/j.seppur.2024.130191.
  41. Li, K., Zhu, L., Wu, Z. & Wang, W. (2024a). Properties of Cemented Filling Materials Prepared from PG-Steel Slag-Blast-Furnace Slag and Its Environmental Effect. Materials, 17. DOI:10.3390/ma17143618.
  42. Li, L., Yang, S., Hu, X., Li, Z. & Chen, H. (2024b). The combined application of salt-alkali tolerant phosphate solubilizing microorganisms and PG is an excellent measure for the future improvement of saline-alkali soils. Frontiers in Microbiology, 15. DOI:10.3389/fmicb.2024.1364487.
  43. Li, X., Du, J., Gao, L., He, S., Gan, L., Sun, C. & Shi, Y. (2017). Immobilization of PG for cemented paste backfill and its environmental effect. Journal of Cleaner Production, 156, 137-146. DOI:10.1016/j.jclepro.2017.04.046.
  44. Li, Y., Dai, S., Zhang, Y, Huang, J., Su, Y. & Ma, B. (2018a). Preparation and thermal insulation performance of cast-in-situ PG wall. Journal of Applied Biomaterials & Functional Materials, 16, 81-92. DOI:10.1177/2280800017751487.
  45. Li, Y., Li, M. & Sang, P. (2022a). A bibliometric review of studies on construction and demolition waste management by using CiteSpace. Energy and Buildings, 258. DOI:10.1016/j.enbuild.2021.111822.
  46. Li, Y., Li, M., Sang, P., Chen, P.-H. & Li, C. (2022b). Stakeholder studies of green buildings: A literature review. Journal of Building Engineering, 54. DOI:10.1016/j.jobe.2022.104667.
  47. Li, Y., Luo, W., Li, G., Wang, K. & Gong, X. (2018b). Performance of PG and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting. Bioresource Technology, 250, 53-59. DOI:10.1016/j.biortech.2017.07.172.
  48. Liu, S., Fang, P., Ren, J. & Li, S. (2020a). Application of lime neutralised PG in supersulfated cement. Journal of Cleaner Production, 272. DOI:10.1016/j.jclepro.2020.122660.
  49. Liu, S., Ouyang, J. & Ren, J. (2020b). Mechanism of calcination modification of PG and its effect on the hydration properties of PG-based supersulfated cement. Construction and Building Materials, 243. DOI:10.1016/j.conbuildmat.2020.118226.
  50. Liu, S., Wang, L. & Yu, B. (2019). Effect of modified PG on the hydration properties of the PG-based supersulfated cement. Construction and Building Materials, 214, 9-16. DOI:10.1016/j.conbuildmat.2019.04.052.
  51. Liu, S., Wang, Y., Wu, A., Liu, P., Chang, Y. & Ruan, Z. (2024a). Performance evolution of alkali-activated phosphorus slag paste filling material: Effect of hemihydrate PG content. Process Safety and Environmental Protection, 187, 736-748. DOI:10.1016/j.psep.2024.05.018.
  52. Liu, Y., Yang, Z., Zhang, L., Wan, Deng, F., Zhao, Z. & Wang, J. (2024b). Characteristics of Bacterial Community Structure and Function in Artificial Soil Prepared Using Red Mud and PG. Microorganisms, 12. DOI:10.3390/microorganisms12091886.
  53. Liu, Y., Zhang, L., Xue, B., Chen, L., Wang, G., Wang, J., Wan, H., Lin, H. & Zhu, G. (2024c). Simulation of red mud/PG-based artificial soil engineering applications in vegetation restoration and ecological reconstruction. Science of the Total Environment, 951. DOI:10.1016/j.scitotenv.2024.175656.
  54. Lou, X.-Y., Liang, J., Liu, S., Wang, J. & Chen, H. (2024). From Grave to Cradle: Treatment, Resource Recycling, and Valorization of PG Wastes. Environmental Science & Technology Letters, 11, 908-919. DOI:10.1021/acs.estlett.4c00530.
  55. Lu, M., Wang, Y., Jiao, W., Yu, J., Gao, P., Zhao, Q., Li, D. & Chi, R. (2024). Eliminating waste with waste: Removal of doxycycline in water by goethite modified PG. Journal of Water Process Engineering, 63. DOI:10.1016/j.jwpe.2024.105411.
  56. Ma, B., Lu, W., Su, Y., Li, Y., Gao, C. & He, X. (2018). Synthesis of α-hemihydrate gypsum from cleaner PG. Journal of Cleaner Production, 195, 396-405. DOI:10.1016/j.jclepro.2018.05.228.
  57. Maina, L., Kiegiel, K., Samczyński, Z., Haneklaus, N., Zakrzewska-Kołtunowicz, G. (2024). Sulfuric Acid Leaching Recovery of Rare Earth Elements from Wizów’s PG in Poland. Sustainability, 16 (20): 9059-9059. DOI:10.3390/su16209059.
  58. Merino-Gergichevich, C., Alberdi, M., Ivanov, G.I. & Reyes-Diaz, M. (2010). Al3+- Ca2+ interaction in plants growing in acid soil: Al-phytotoxicuty response to calcareous amendments. Journal of Soil Science and Plant Nutrition, 10, 217-243. DOI:10.4067/s0718-95162010000100003.
  59. Meskini, S., Samdi, A., Ejjaouani, H. & Remmal, T. (2021). Valorization of PG as a road material: Stabilizing effect of fly ash and lime additives on strength and durability. Journal of Cleaner Production, 323. DOI:10.1016/j.jclepro.2021.129161.
  60. Mi, Y., Chen, D. & Wang, S. (2018). Utilization of PG for the preparation of -calcium sulfate hemihydrate in chloride-free solution under atmospheric pressure. Journal of Chemical Technology and Biotechnology, 93, 2371-2379. DOI:10.1002/jctb.5584.
  61. Mun, K. J., Hyoung, W. K., Lee, C. W., So, S. Y. & Soh, Y. S. (2007). Basic properties of non-sintering cement using PG and waste lime as activator. Construction and Building Materials, 21, 1342-1350. DOI:doi.org/10.1016/j.conbuildmat.2005.12.022.
  62. Murali, G. & Azab, M. (2023). Recent research in utilization of PG as building materials: Review. Journal of Materials Research and Technology, 25, 960-987. DOI:10.1016/j.jmrt.2023.05.272.
  63. Nils, H., Barbosa, S., Basallote, M.D. & Bertau, M. (2022). Closing the upcoming EU gypsum gap with PG. Resources, Conservation & Recycling, 182, 10. DOI:10.1016/j.resconrec.2022.106328.
  64. Nisti, M. B., Saueia, C. R., Malheiro, L. H., Groppo, G. H. & Mazzilli, B. P. (2015). Lixiviation of natural radionuclides and heavy metals in tropical soils amended with PG. Journal of Environmental Radioactivity, 144, 120-126. DOI:10.1016/j.jenvrad.2015.03.013.
  65. Peng, L., Yang, B., Deng, J., Xu, X. & Zhang, S. (2023). Study on the PG Proportion in Foamed Concrete Based on Concrete Strength and Carbon Emission. Journal of Physics: Conference Series, 2510, 012006. DOI:10.1088/1742-6596/2510/1/012006.
  66. Pérez-López, R., Macías, F., Cánovas, C. R., Sarmiento, A. M. & Pérez-Moreno, S. M. (2016). Pollutant flows from a PG disposal area to an estuarine environment: An insight from geochemical signatures. Science of the Total Environment, 553, 42-51. DOI:10.1016/j.scitotenv.2016.02.070.
  67. Potgieter, J. H., Potgieter, S. S., McCrindle, R. I. & Strydom, C. A. (2003). An investigation into the effect of various chemical and physical treatments of a South African PG to render it suitable as a set retarder for cement. Cement and Concrete Research, 33, 1223-1227. DOI:10.1016/S0008-8846(03)00036-X.
  68. Qi, J., Zhu, H., Zhou, P., Wang, X., Wang, Z., Yang, S., Yang, D. & Li, B. (2023). Application of PG in soilization: a review. International Journal of Environmental Science and Technology, 20, 10449-10464. DOI:10.1007/s13762-023-04783-2.
  69. Rashad, A. M. (2017). PG as construction material. Journal of Cleaner Production, 166, 732-743. DOI:10.1016/j.jclepro.2017.08.049.
  70. Rehman, M. Z. U., Rizwan, M., Ali, S., Sabir, M. & Sohail, M. I. (2017). Contrasting Effects of Organic and Inorganic Amendments on Reducing Lead Toxicity in Wheat. Bulletin of Environmental Contamination and Toxicology, 99, 642-647. DOI:10.1007/s00128-017-2177-4.
  71. Reigl, S., Van Driessche, A. E. S., Ullrich, T., Koltzenburg, S., Kunz, W. & Kellermeier, M. (2024). Organic solvent-free synthesis of calcium sulfate hemihydrate at room temperature. Chemical Communications, 60, 610-613. DOI:10.1039/d3cc02552g.
  72. Reijnders, L. (2014). Phosphorus resources, their depletion and conservation, a review. Resources, Conservation and Recycling, 93, 32-49. DOI:10.1016/j.resconrec.2014.09.006.
  73. Sabrina, F., Marcos, L., Samuel, R., Luis, F., Tito, R., Fabio, A, D. & Guilherme, L. (2022). Leaching of rare earth elements from PG. Chemosphere, 301. DOI:10.1016/j.chemosphere.2022.134661.
  74. Shen, Y., Qian, J., Chai, J. & Fan, Y. (2014). Calcium sulphoaluminate cements made with PG: Production issues and material properties. Cement & Concrete Composites, 48, 67-74. DOI:10.1016/j.cemconcomp.2014.01.009.
  75. Singh, M. & Garg, M. (1994). Gypsum-based fibre-reinforced composites: an alternative to timber. Construction and Building Materials, 8, 155-160. DOI:10.1016/S0950-0618(09)90028-9.
  76. Smadi, M. M., Haddad, R. H. & Akour, A. M. (1999). Potential use of PG in concrete. Cement and Concrete Research, 29, 1419-1425. DOI:10.1016/S0008-8846(99)00107-6.
  77. Stout, W. L., Sharpley, A. N. & Weaver, S. R. (2003). Effect of amending high phosphorus soils with flue-gas desulfurization gypsum on plant uptake and soil fractions of phosphorus. Nutrient Cycling in Agroecosystems, 67, 21-29. DOI:10.1023/A:1025163319889.
  78. Taher, M. A. (2007). Influence of thermally treated PG on the properties of Portland slag cement. Resources, Conservation and Recycling, 52, 28-38. DOI:10.1016/j.resconrec.2007.01.008.
  79. Tayibi, H., Choura, M., Lopez, F.A., Alguacil, F. J. & Lopez-Delgado, A. (2009). Environmental impact and management of PG. Journal of Environmental Management, 90, 2377-2386. DOI:10.1016/j.jenvman.2009.03.007.
  80. Wang, B., Yang, L. & Cao, J. (2021). The Influence of Impurities on the Dehydration and Conversion Process of Calcium Sulfate Dihydrate to α-Calcium Sulfate Hemihydrate in the Two-Step Wet-Process Phosphoric Acid Production. Acs Sustainable Chemistry & Engineering, 9, 14365-14374. DOI:10.1021/acssuschemeng.1c03792.
  81. Wang, C.-Q., Ying, Y., Wang, T., Huang, D.-M. & Wei, S. (2024a). Highly efficient modified PG building gypsum powder and environmentally friendly utilisation in self-levelling mortar. Archives of Civil and Mechanical Engineering, 24. DOI:10.1007/s43452-024-00933-6.
  82. Wang, M., Guo, Z., Du, J., Lu, H., Liu, L., Wang, T. & Pan, S. (2024b). Assessing the hepatotoxicity of PG leachate in zebrafish (Danio rerio). Science of the Total Environment, 926. DOI:10.1016/j.scitotenv.2024.172018.
  83. Wang, Q., Cui, Y. & Xue, J. (2020). Study on the improvement of the waterproof and mechanical properties of hemihydrate PG-based foam insulation materials. Construction and Building Materials, 230. DOI:10.1016/j.conbuildmat.2019.117014.
  84. Wang, Y., Bai, J., Zhang, L., Liu, H., Wang, W., Liu, Z. & Zhang, G. (2023). Advances in studies on the plant rhizosphere microorganisms in wetlands: A visualization analysis based on CiteSpace. Chemosphere, 317. DOI:10.1016/j.chemosphere.2023.137860.
  85. Wei, Z. & Deng, Z. (2022). Research hotspots and trends of comprehensive utilization of PG: Bibliometric analysis. Journal of Environmental Radioactivity, 242. DOI:10.1016/j.jenvrad.2021.106778.
  86. Wu, F. (2024). The treatment of PG leachate is more urgent than PG. Environmental Research, 262. DOI:10.1016/j.envres.2024.119849.
  87. Wu, S., Yao, X., Ren, C., Yao, Y. & Wang, W. (2020a). Recycling PG as a sole calcium oxide source in calcium sulfoaluminate cement and its environmental effects. Journal of Environmental Management, 271. DOI:10.1016/j.jenvman.2020.110986.
  88. Wu, S., Yao, Y., Yao, X., Ren, C., Li, J., Xu, D. & Wang, W. (2020b). Co-preparation of calcium sulfoaluminate cement and sulfuric acid through mass utilization of industrial by-product gypsum. Journal of Cleaner Production, 265. DOI:10.1016/j.jclepro.2020.121801.
  89. Wu, Y., Chen, J., Liu, H., Zong, Y., Zhang, J., Li, T., Su, Y. & Jiang, M. (2024a). Removal of fluoride ions from wastewater via simple low-temperature thermal decomposition-modified PG. Journal of Saudi Chemical Society, 28. DOI:10.1016/j.jscs.2024.101921.
  90. Wu, Y., Xu, F., Wu, X., Jiao, Y., Sun, T., Li, Z., Yang, F., Li, H., Li, B., Xu, J., Chen, S., Liu, Y. & Zhu, J. (2024b). Retardation mechanism of PG in PG-based excess-sulfate cement. Construction and Building Materials, 428. DOI:10.1016/j.conbuildmat.2024.136293.
  91. Xie, H., Wang, J., Hou, Z., Wang, Y., Liu, T., Tang, L. & Jiang, W. (2016). CO2 sequestration through mineral carbonation of waste PG using the technique of membrane electrolysis. Environmental Earth Sciences, 75. DOI:10.1007/s12665-016-6009-3.
  92. Xu, L., Liu, S., Li, N., Peng, Y., Wu, K. & Wang, P. (2018). Retardation effect of elevated temperature on the setting of calcium sulfoaluminate cement clinker. Construction and Building Materials, 178, 112-119. DOI:10.1016/j.conbuildmat.2018.05.061.
  93. Xu, X., Kong, L., Li, X., Lei, B., Li, X., Qu, F., Pang, B. & Dong, W. (2024). Energy conservation and carbon emission reduction of cold recycled petroleum asphalt concrete pavement with cement-stabilized PG. Construction and Building Materials, 433. DOI:10.1016/j.conbuildmat.2024.136696.
  94. Yang, J.-C., Wu, H.-D., Teng, N.-C., Ji, D.-Y. & Lee, S.-Y. (2012). Novel attempts for the synthesis of calcium sulfate hydrates in calcium chloride solutions under atmospheric conditions. Ceramics International, 38, 381-387. DOI:10.1016/j.ceramint.2011.07.017.
  95. Yang, J., Dong, S., Ma, L., Dai, Q., Zheng, D., Huang, B., Sun, M., Hu, B., Du, W., Xie, L., Duan, L. & Yan, X. (2024). Review on high-value utilization of PG: Utilization of calcium and oxygen resources present in phosphogypusm. Separation and Purification Technology, 344. DOI:10.1016/j.seppur.2024.127246.
  96. Yang, J., Liu, S., Wang, Y. Huang, Y., Yuxin, S., Dai, Q., Liu, H. & Ma, L. (2022). PG Resource Utilization Based on Thermodynamic Analysis. Chemical Engineering & Technology, 45, 776-790. DOI:10.1002/ceat.202100590.
  97. Zhang, J., Cui, K., Chang, J. & Wang, L. (2024a). PG-based building materials: Resource utilization, development, and limitation. Journal of Building Engineering, 91. DOI:10.1016/j.jobe.2024.109734.
  98. Zhang, K., Liu, F., Zhang, H., Duan, Y., Luo, J., Sun, X., Wang, M., Ye, D., Wang, M., Zhu, Z. & Li, D. (2024b). Trends in phytoremediation of heavy metals-contaminated soils: A Web of Science and CiteSpace bibliometric analysis. Chemosphere, 352, 141293-141293. DOI:10.1016/j.chemosphere.2024.141293.
  99. Zhou, J., Zhang, Y., Shu, Z., Wang, Y. Yakubu, Y. Zhao, Y. & Li, X. (2019). Enhancing waterproof performance of PG non-fired ceramics by coating silane-coupled unsaturated polyester resin. Materials Letters, 252, 52-55. DOI:10.1016/j.matlet.2019.05.105.
  100. Zhou, X., Zhao, Y., Zhu, H. & Zhou, Q. (2024a). Performance activation and strength evolution mechanism of carbide slag on anhydrous PG backfill material. Construction and Building Materials, 419. DOI:10.1016/j.conbuildmat.2024.135503.
  101. Zhou, Y., Liu, Z., Shan, J., Wu, Lichtfouse, E. & Liu, H. (2024b). Efficient recovery of phosphate from urine using magnesite modified corn straw biochar and its potential application as fertilizer. Journal of Environmental Chemical Engineering, 12. DOI:10.1016/j.jece.2024.111925.
Go to article

Authors and Affiliations

Yuntao Zhang
1 3
Yichao Lin
2 3
Hai Jin
2 3
Yong Zhang
2
Lei Deng
2
Wei Feng
2
Meiyan Si
2
Chunhua Wang
2 4 5
Qingsong Li
1 3 5
Tao Hou
2

  1. Guizhou Research Institute of Coal Mine Design Co., Ltd.,No. 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
  2. Guizhou Research Institute of Coal Mine Design Co., Ltd.,No. 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China.
  3. Guizhou Province Laboratory of Intelligent Development and Efficient Utilization of Energy,No. 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China.
  4. Guizhou Province Laboratory of Intelligent Development and Efficient Utilization of Energy,No. 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
  5. Guizhou Mining Safety Science Research Institute Co., Ltd.,No. 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
Download PDF Download RIS Download Bibtex

Abstract

The global demand for effective and sustainable water treatment technologies has intensified due to growing water scarcity and industrial pollution. Accordingly, this study evaluated the potential of unmodified metallurgical dust, a by-product of the steel industry rich in metal oxides, as a low-cost adsorbent for removing Reactive Red 198 (a representative anionic azo dye) from both synthetic aqueous solutions and real textile wastewater. This research contributes to the the development of sustainable water treatment technologies by exploring waste valorization as a strategy for pollutant removal. Batch adsorption experiments were conducted using varying concentrations of Reactive Red 198 and different doses of metallurgical dust. Both synthetic dye solutions and actual textile wastewater were tested. Adsorption performance was evaluated using nonlinear isotherm models (Langmuir, Freundlich, and Dubinin-Radushkevich) and kinetic models (Lagergren Pseudo-First-Order, Pseudo-Second-Order, and Elovich) to better understand the adsorption mechanism. The adsorption data best fitted the Freundlich and Elovich models, indicating surface heterogeneity and a chemisorption-dominated process. The maximum experimental adsorption capacity was 49.42 mg·g-1 at an adsorbent dose of 0.5 g. The material maintained high performance even under real wastewater conditions, which were characterized by elevated pH and salinity, suggesting its resilience in complex matrices. Unmodified metallurgical dust exhibits strong potential as an effective, low-cost adsorbent for anionic dye removal. Its robust performance in real wastewater underscores its practical applicability and supports the integration of environmental waste management with water pollution mitigation.
Go to article

Bibliography

  1. Asghari, A., Dalvand, S., Miresmaeili, M.S., Khoramjah, F., Omidvar, M., Kambarani, M. & Mohammadi, N. (2023). Reactive Red 198 as high-performance redox electrolyte additive for defective mesoporous carbon-based supercapacitor, International Journal of Hydrogen Energy, 48, 26, pp. 9776–9784. DOI: 10.1016/j.ijhydene.2022.11.322
  2. Baghapour, M.A., Pourfadakari, S. & Mahvi, A.H. (2014). Investigation of Reactive Red Dye 198 removal using multiwall carbon nanotubes in aqueous solution, Journal of Industrial and Engineering Chemistry, 20, 5, pp. 2921–2926. DOI: 10.1016/j.jiec.2013.11.029
  3. Bhatnagar, A. & Jain, A.K. (2005). A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water, Journal of Colloid and Interface Science, 281, pp. 49–55. DOI: 10.1016/j.jcis.2004.08.076
  4. Bohacz, J. (2020). Removal of a textile dye (RBBR) from the water environment by fungi isolated from lignocellulosic composts, Archives of Environmental Protection, 46, 2, pp. 12–20. DOI: 10.24425/aep.2020.133470
  5. Branca, T.A., Colla, V., Algermissen, D., Granbom, H., Martini, U., Morillon, A., Pietruck, R. & Rosendahl, S. (2020). Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe, Metals, 10, 345. DOI:10.3390/met10030345
  6. Calvete, T., Lima, E.C., Cardoso, N.F., Dias, S.L.P. & Pavan, F.A. (2009). Application of carbon adsorbents prepared from the Brazilian pine-fruit-shell for the removal of Procion Red MX 3B from aqueous solution–Kinetic, equilibrium, and thermodynamic studies, Chemical Engineering Journal, 155, pp. 627–636. DOI:10.1016/j.cej.2009.08.019
  7. Carbaş, H.Ö., Kadak, A.E., Küçükgülmez, A., Gülnaz, O. & Çelik, M. (2023). Investigation of Reactive Red 198 Dye Removal by Chitosan from Aqueous Solution, Israeli Journal of Aquaculture - Bamidgeh, 75, 2. DOI:10.46989/001c.88510
  8. Chalaris, M., Gkika, D.A., Tolkou, A.K. & Kyzas, G.Z. (2023). Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview. Environmental Science and Pollution Research, 30, pp. 119627–119653. DOI:10.1007/s11356-023-30891-0
  9. Dehghani, M.H., Pourshabanian, M. & Heidarinejad, Z. (2018). Experimental data on the adsorption of Reactive Red 198 from aqueous solution using Fe3O4 nanoparticles: Optimization by response surface methodology with central composite design. Data in Brief, 19, pp. 2126–2132. DOI:10.1016/j.dib.2018.07.008
  10. Dehghani, M.H., Salari, M., Karri, R.R., Hamidi1, F. & Bahadori, R. (2021). Process modeling of municipal solid waste compost ash for reactive red 198 dye adsorption from wastewater using data driven approaches. Scientific Reports, 11, 11613. DOI:10.1038/s41598-021-90914-z
  11. Deogaonkar-Baride, S., Koli, M. & Ghuge, S.P. (2025). Recycling textile dyeing effluent through ozonation: An environmentally sustainable approach for reducing freshwater and chemical consumption and lowering operational costs. Journal of Cleaner Production, 510, 10, 145641. DOI:10.1016/j.jclepro.2025.145641
  12. Djordjevic, D., Stojiljkovic, D. & Smelcerovic, M. (2014). Adsorption kinetics of reactive dyes on ash from town heating plant, Archives of Environmental Protection, 40, 3, pp. 123–135. DOI: 10.2478/aep-2014-0024
  13. Dubinin, M.M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews. 60, pp. 235–241. DOI:10.1021/cr60204a006
  14. Fadzli, J., Ku Halim, K.H., Nik Him, N.R. & Puasa, S.W. (2022). A critical review on the treatment of reactive dye wastewater. Desalination. Water Treat. 257, pp. 185–203. DOI:10.5004/dwt.2022.28028
  15. Foo, K.Y. & Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, pp. 2–10. DOI:10.1016/j.cej.2009.09.013
  16. Freundlich, H.M.F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, pp. 385–471
  17. Google Maps. Available online: www.google.com/maps (accessed on 17 March 2025)
  18. Jain, A.K., Gupta, V.K., Bhatnagar, A. & Suhas. (2003). Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, 101, pp. 31–42. DOI:10.1016/S0304-3894(03)00146-8
  19. Kamani, H., Hosseinzehi, M., Ghayebzadeh, M., Azari, A., Ashrafi, S.D. & Abdipour, H. (2024). Degradation of reactive red 198 dye from aqueous solutions by combined technology advanced sonofenton with zero valent iron: Characteristics/effect of parameters/kinetic studies. Heliyon, e23667. DOI:10.1016/j.heliyon.2023.e23667
  20. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, pp. 2221–2295. DOI:10.1021/ja02268a002
  21. Largitte, L. & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, pp. 495–504. DOI: 10.1016/j.cherd.2016.02.006
  22. Lazarević, S., Janković-Častvan, I., Jovanović, D., Milonjić, S., Janaćković, D. & Petrović, R. (2007). Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Applied Clay Science, 37, pp. 47–57. DOI:10.1016/j.clay.2006.11.008
  23. Makhathini, T.P., Bwapwa, J.K. & Mtsweni, S. (2023). Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review. Sustainability, 15, 2518. DOI:10.3390/su15032518
  24. Manchisi, J., Matinde, E., Rowson, N.A., Simmons, M.J.H., Simate, G.S., Ndlovu, S. & Mwewa, B. (2020). Ironmaking and Steelmaking Slags as Sustainable Adsorbents for Industrial Effluents and Wastewater Treatment: A Critical Review of Properties, Performance, Challenges and Opportunities. Sustainability, 12, 2118. DOI:10.3390/su12052118
  25. Matei, E., Predescu, A.M., Șăulean, A.A., Râpă, M., Sohaciu, M.G., Coman, G., Berbecaru, A.C., Predescu, C., Vâju, D. & Vlad, G. (2022). Ferrous Industrial Wastes-Valuable Resources for Water and Wastewater Decontamination. International Journal of Environmental Research and Public Health, 19, 21, 13951. DOI:10.3390/ijerph192113951
  26. Mustafa, G., Noreen S., Ahmad, A., Iqbal, D.N., Rizwan, M., Jilani, M.I., Ahmad, M., Munir, S. & Kennedy, J.F. (2025). Eco-friendly polymeric ferrite based on chitosan, starch, PANI, PVA, and alginate for targeted degradation of reactive Red-198 dye in wastewater treatment. International Journal of Biological Macromolecules, 310, 3, 142434. DOI: 10.1016/j.ijbiomac.2025.142434
  27. Pająk, M. (2021). Adsorption Capacity of Smectite Clay and Its Thermal and Chemical Modification for Two Anionic Dyes: Comparative Study. Water Air and Soil Pollution, 232, 83. DOI:10.1007/s11270-021-05032-3
  28. Pająk, M. & Dzieniszewska, A. (2020). Evaluation of the metallurgical dust sorbent efficacy in Reactive Blue 19 dye removal from aqueous solutions and textile wastewater. Environmental Engineering Science, 37, 7, pp. 509–518. DOI:10.1089/ees.2019.0410
  29. Pournamdari, E. & Niknam, L. (2024). Applicability, adsorbent chitosan@Fe2 (MoO4)3 nanocomposite for removal of textile reactive red 198 dye from wastewater. Desalination and Water Treatment, 317, 100268. DOI:10.1016/j.dwt.2024.100268
  30. Shaali, A., Kamyab Moghadas, B. & Tamjidi, S. (2021). Removal of Reactive Red 198 dye from aqueous media using Boehmite/Fe3O4/GO magnetic nanoparticles as a novel & effective adsorbent, International Journal of Environmental Analytical Chemistry, 103, 18, pp. 7319–7338. DOI:10.1080/03067319.2021.1972990
  31. Song, Y., Wang, L., Qiang, X., Gu, W., Ma, Z. & Wang, G. (2023). An overview of biological mechanisms and strategies for treating wastewater from printing and dyeing processes. Journal of Water Process Engineering, 104242. DOI:10.1016/j.jwpe.2023.104242
  32. UN Environ Programme, Available online: https://www.unep.org/news-and-stories/press-release/half-world-face-severe-water-stress-2030-unless-water-use-decoupled (accessed on 19 March 2025)
  33. Xue, Y., Hou, H. & Zhu, S. (2009). Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: Isotherm and kinetic study. Chemical Engineering Journal, 147, pp. 272–279. DOI:10.1016/j.cej.2008.07.017
Go to article

Authors and Affiliations

Magdalena Pająk
1
ORCID: ORCID

  1. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study presents an extensive environmental impact assessment of the Erbil Oil Refinery, located in the Kurdistan Region of Iraq. The evaluation included surface water, groundwater, soil, and air quality analyses to identify the ecological and public health implications of refinery operations. Surface water samples from the Greater Zab River revealed elevated biochemical oxygen demand (BOD₅), chemical oxygen demand (COD), and copper concentrations downstream from the refinery, suggesting localized organic and heavy metal contamination. Groundwater analysis from six wells detected widespread exceedance of Total Petroleum Hydrocarbons (TPH), arsenic, and lead beyond Iraqi permissible limits, indicating serious risks to potable water safety. Air quality monitoring showed high concentrations of PM₂.₅ exceeding USEPA standards, particularly near the refinery, while PM₁₀ remained within safe limits in most seasons. Soil samples collected from eight sites demonstrated significant petroleum hydrocarbon presence and elevated levels of trace metals such as lead and copper near the refinery. Using the Canadian Council of Ministers of the Environment (CCME) indices, surface water and groundwater were classified as "fair" to "good", while soil quality ranged from "medium" to "low". The findings underscore the urgent need for regulatory enforcement, remediation strategies, and long-term monitoring to protect environmental and human health in Erbil.
Go to article

Bibliography

  1. Afaj, A. and Al-Khashab, D. (2008) 'Environmental impact of air pollution in AL-Daura Refinery', ASTF UNPUB REPORT.
  2. Al-Naqishbandi, L. (2002) Limnological studies on the water treatment plant in Efraz, Erbil, Kurdistan Region, Iraq, unpublished thesis, M. Sc. Thesis, College of Science, Salahaddin University-Erbil.
  3. Al-Shammary, S.H.E. and Al-Mayyahi, S.O.M. (2021) 'Groundwater quality assessment for drinking purposes using water quality index in Ali Al-Gharbi District, Iraq', Journal of Water and Land Development, 274-280-274-280.
  4. Al-Tameemi, I., Hasan, M., Al-Mussawy, H. and Al-Madhhachi, A. (2020) 'Groundwater Quality Assessment Using Water Quality Index Technique: A Case Study of Kirkuk Governorate, Iraq', in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012185, available: DOI:10.1088/1757-899X/881/1/012185.
  5. Anyanwu, I.N., Beggel, S., Sikoki, F.D., Okuku, E.O., Unyimadu, J.-P. and Geist, J. (2023) 'Pollution of the Niger Delta with total petroleum hydrocarbons, heavy metals and nutrients in relation to seasonal dynamics', Scientific reports, 13(1), 14079, available: DOI:10.1038/s41598-023-40995-9.
  6. Association, A.P.H. (1926) Standard methods for the examination of water and wastewater, American public health association.
  7. Auchincloss, A. and De Roos, A.J. (2019) 'RE: Statement on the Health Effects of Refineries and Implications for the S Philadelphia Refinery', The City of Philadelphia Refinery Advisory Group NA (2019), 1-4.
  8. Aziz, S.Q. (2004) 'Seasonal Variation of Some Physical and Chemical Properties of Water and Wastewater in Erbil City', Journal of Duhok University, 7, 76-88.
  9. Bosco, M., Varrica, D. and Dongarra, G. (2005) 'Case study: inorganic pollutants associated with particulate matter from an area near a petrochemical plant', Environmental research, 99(1), 18-30, available: DOI:10.1016/j.envres.2004.09.011.
  10. CCME (2007) Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health CCME SOIL QUALITY INDEX 1.0.
  11. Chnaray, M. (2003) 'Hydrogeology and Hydrochemistry of Kapran Basin Erbil-N-of Iraq', Unpublished PhD. Thesis, College of Science, University of Baghdad, Iraq. 172p.
  12. Gao, H., Wu, M., Liu, H., Xu, Y. and Liu, Z. (2022) 'Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function', Environmental Pollution, 293, 118511, available: DOI:10.1016/j.envpol.2021.118511.
  13. Genther, O. and Beede, D. (2013) 'Preference and drinking behavior of lactating dairy cows offered water with different concentrations, valences, and sources of iron', Journal of Dairy Science, 96(2), 1164-1176, available: DOI:10.3168/jds.2012-5877.
  14. Goran, S.M. (2010) 'Evaluation of Ifraz water treatment plants in Erbil city-Iraq', Journal of Education and Science, 23(4), 58.0-79.0.
  15. Güven, D. and Akıncı, G. (2011) 'Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples', Gazi University Journal of Science, 24(1), 29-34.
  16. Hassan, A.K., Hassan, M.M.A. and Hasan, A.F. (2020) 'Treatment of Iraqi petroleum Refinery wastewater by advanced oxidation processes', in Journal of Physics: Conference Series, IOP Publishing, 012071, available: DOI:10.1088/1742-6596/1660/1/012071.
  17. Ite, A.E., Harry, T.A., Obadimu, C.O., Asuaiko, E.R. and Inim, I.J. (2018) 'Petroleum hydrocarbons contamination of surface water and groundwater in the Niger Delta region of Nigeria', Journal of Environment Pollution and Human Health, 6(2), 51-61, available: DOI:10.12691/jephh-6-2-2
  18. Khalefah, A.R.M., Omran, I.I. and Al Waily, M.J. (2024) 'Environmental Impact of Petroleum Refinery Effluent on Groundwater Pollution: A Case Study of Maysan Refinery, Iraq', Salud, Ciencia y Tecnología-Serie de Conferencias, (3), 844.
  19. Leggett, D., Brown, R., Brewer, D., Stanfield, G. and Holliday, E. (2001) 'Rainwater and greywater use in buildings: best practice guidance', CIRIA report C, 539.
  20. Lumb, A., Halliwell, D. and Sharma, T. (2006) 'Application of CCME Water Quality Index to monitor water quality: A case study of the Mackenzie River basin, Canada', Environmental Monitoring and Assessment, 113, 411-429, available: DOI:10.1007/s10661-005-9092-6.
  21. Nadal, M., Schuhmacher, M. and Domingo, J. (2004) 'Metal pollution of soils and vegetation in an area with petrochemical industry', Science of the Total Environment, 321(1-3), 59-69, available: DOI:10.1016/j.scitotenv.2003.08.029.
  22. Otokunefor, T. and Obiukwu, C. (2005) 'Impact of refinery effluent on the physicochemical properties of a water body in the Niger delta', Applied ecology and environmental research, 3(1), 61-72.
  23. Said, A., Stevens, D.K. and Sehlke, G. (2004) 'An innovative index for evaluating water quality in streams', Environmental management, 34, 406-414, available: DOI:10.1007/s00267-004-0210-y.
  24. Shie, R.-H. and Chan, C.-C. (2013) 'Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling', Journal of Hazardous materials, 261, 72-82, available: DOI:10.1016/j.jhazmat.2013.07.017.
  25. Siddiqua, A., Hahladakis, J.N. and Al-Attiya, W.A.K. (2022) 'An overview of the environmental pollution and health effects associated with waste landfilling and open dumping', Environmental Science and Pollution Research, 29(39), 58514-58536, available: DOI:10.1007/s11356-022-21578-z.
  26. Stevens, P. (2018) 'The role of oil and gas in the economic development of the global economy', Extractive industries, 71, 1-746.
  27. Strickland, G., Beckner, W. and Leu, M.-L. (1972) 'Absorption of copper in homozygotes and heterozygotes for Wilson's disease and controls: isotope tracer studies with 67Cu and 64Cu', Clinical Science, 43(5), 617-625, available: DOI:10.1042/cs0430617.
  28. Trajani, N. (2006) Wastewater treatment using Typha angustifolia as a biological purifier for irrigation purposes, unpublished thesis, M. Sc. Thesis. Univ. of Salahaddin-Erbil. Iraq.
  29. Trujillo-González, J.M., Mahecha-Pulido, J.D., Torres-Mora, M.A., Brevik, E.C., Keesstra, S.D. and Jiménez-Ballesta, R. (2017) 'Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate', Agriculture, 7(7), 52, available: DOI:10.3390/agriculture7070052.
Go to article

Authors and Affiliations

Mehmet Fatih Dilekoglu
1
ORCID: ORCID
Murad Khan Mahmood Ahmed
1
ORCID: ORCID
Masoud Hussein Hamed
2
ORCID: ORCID
Shevan Jirjees
2
ORCID: ORCID

  1. Harran University, Türkiye
  2. Salahaddin University, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The stochastic groundwater flow paths and hydrogeological complexity inherent to karst systems significantly exacerbate acid mine drainage (AMD) contamination risks in these regions. This study examines the impacts of AMD from abandoned coal mines on aquatic microbial communities and water quality parameters in both water and sedimentary environments of the karst-dominated Yudong River Basin. Water and sediment samples were collected from upstream, AMD discharge points, and downstream areas. Physicochemical parameters (pH, Fe, Mn, SO₄²⁻, NH₃-N, COD) were analyzed, and microbial communities were characterized
using high-throughput 16S rRNA sequencing. Taxonomic composition and correlations between environmental factors and microbial taxa were evaluated. The analysis demonstrated that AMD significantly reduced pH (from 7.63 to 3.22) and increased pollutant concentrations, with gradual downstream recovery. Microbial diversity declined near the discharge point, accompanied by shifts in dominant taxa: Campylobacterota (55.0 ± 1.5%) in water and Firmicutes (48.4 ± 5.6%) in sediments. Key genera exhibited strong correlations with pollutants (r > 0.65) and acidic conditions. Archaeal communities were dominated by Thermoplasmatota (water) and Halobacterota (sediments), reflecting habitat-specific adaptations. AMD drastically restructured microbial communities, selecting for acid- and metal-tolerant taxa involved in sulfur, iron, and nitrogen cycling. These findings highlight the ecological resilience of specific microbial groups and their potential for bioremediation in AMD-contaminated karst ecosystems.
Go to article

Bibliography

  1. Acharya, B.S. & Kharel, G. (2020). Acid mine drainage from coal mining in the United States–An overview. Journal of Hydrology, 588, 125061. DOI:10.1016/j.jhydrol.2020.125061
  2. Aoyagi, T., Hamai, T., Hori, T., Sato, Y., Kobayashi, M., Sato, Y., Inaba, T., Ogata, A., Habe, H. & Sakata, T. (2017). Hydraulic retention time and pH affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage. Amb Express, 7(1), 142. DOI:10.1186/s13568-017-0440-z
  3. Bargiela, R., Korzhenkov, A.A., McIntosh, O.A., Toshchakov, S.V., Yakimov, M.M., Golyshin, P.N. & Golyshina, O.V. (2023). Evolutionary patterns of archaea predominant in acidic environment. Environmental Microbiome, 18(1), 61. DOI:10.1186/s40793-023-00518-5
  4. Basińska, A.M., Reczuga, M.K., Gąbka, M., Strózecki, M., Luców, D., Samson, M., Urbaniak, M., Lesny, J., Chojnicki, B.H., Gilbert, D., Sobczynski, T., Olejnik, J., Silvennoinen, H., Juszczak, R. & Lamentowicz, M. (2020). Experimental warming and precipitation reduction affect the biomass of microbial communities in a Sphagnum peatland. Ecological Indicators, 112, 106059. DOI:10.1016/j.ecolind.2019.106059
  5. Bu, C., Li, X., Li, Q., Li, L. & Wu, P. (2024). Spatiotemporal distributions, sources, and health risks of heavy metals in an acid mine drainage (AMD)-contaminated karst river in southwest China. Applied Water Science, 14(12), 251. DOI:10.1007/s13201-024-02317-w
  6. Chen, D., Feng, Q. & Liang, H. (2021). Effects of long-term discharge of acid mine drainage from abandoned coal mines on soil microorganisms: Microbial community structure, interaction patterns, and metabolic functions. Environmental Science and Pollution Research, 28(38), pp. 53936-53952. DOI:10.1007/s11356-021-14566-2
  7. Chen, D., Zhang, Y., & Feng, Q. (2023). Hydrochemical characteristics and microbial community evolution of Pinglu River affected by regional abandoned coal mine drainage, Guizhou Province, China. Environmental Science and Pollution Research, 30(27), pp. 70671-70687. DOI: 10.1007/s11356-023-27403-5
  8. Fan, X., Ding, S., Gong, M., Chen, M., Gao, S., Jin, Z. & Tsang, D.C. (2018). Different influences of bacterial communities on Fe (III) reduction and phosphorus availability in sediments of the Cyanobacteria-and macrophyte-dominated zones. Frontiers in microbiology, 9, 2636. DOI:10.3389/fmicb.2018.02636
  9. Feng, L., Zhang, Z., Yang, G., Wu, G., Yang, Q. & Chen, Q. (2023). Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion. Environmental Research, 225, 115590. DOI:10.1016/j.envres.2023.115590
  10. Giordani, A., Rodriguez, R.P., Sancinetti, G.P., Hayashi, E.A., Beli, E. & Brucha, G. (2019). Effect of low pH and metal content on microbial community structure in an anaerobic sequencing batch reactor treating acid mine drainage. Minerals Engineering, 141, 105860. DOI:10.1016/j.mineng.2019.105860
  11. Han, X., Schubert, C.J., Fiskal, A., Dubois, N. & Lever, M.A. (2020). Eutrophication as a driver of microbial community structure in lake sediments. Environmental microbiology, 22(8), pp. 3446-3462. DOI:10.1111/1462-2920.15115
  12. Hesse, E., O'Brien, S., Tromas, N., Bayer, F., Luján, A.M., van Veen, E.M., Hodgson, D. & Buckling, A. (2018). Ecological selection of siderophore‐producing microbial taxa in response to heavy metal contamination. Ecology letters, 21(1), pp. 117-127. DOI:10.1111/ele.12878
  13. Huang, L., Bae, H., Young, C., Pain, A.J., Martin, J.B. & Ogram, A. (2021). Campylobacterota dominate the microbial communities in a tropical karst subterranean estuary, with implications for cycling and export of nitrogen to coastal waters. Environmental Microbiology, 23(11), pp. 6749-6763. DOI:10.1111/1462-2920.15746
  14. Jia, B., Li, Y., Zi, X., Gu, X., Yuan, H., Jeppesen, E. & Zeng, Q. (2023). Nutrient enrichment drives the sediment microbial communities in Chinese mitten crab Eriocheir sinensis culture. Environmental Research, 223, 115281. DOI:10.1016/j.envres.2023.115281
  15. Jia, L., Liu, H., Kong, Q., Li, M., Wu, S. & Wu, H. (2020). Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water research, 169, 115285. DOI:10.1016/j.watres.2019.115285
  16. Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K. & Schloss, P.D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and environmental microbiology, 79(17), pp. 5112-5120. DOI:10.1128/AEM.01043-13
  17. Li, J., Wang, L., Wu, B., Wang, J., Yu, Y., Kuzyakov, Y., Ding, S. & Xu, X. (2025). Convergence and divergence of microbial communities in river-Qinghai lake sediment continuum on Tibetan Plateau. Water Research, 282, 123757. DOI:10.1016/j.watres.2025.123757
  18. Li, X., Ren, H., Xu, Z., Chen, G., Zhang, S., Zhang, L. & Sun, Y. (2023). Practical application for legacy acid mine drainage (AMD) prevention and treatment technologies in karst-dominated regions: A case study. Journal of Contaminant Hydrology, 258, 104238. DOI:10.1016/j.jconhyd.2023.104238
  19. Lukhele, T., Selvarajan, R., Nyoni, H., Mamba, B.B. & Msagati, T.A.M. (2019). Diversity and functional profile of bacterial communities at Lancaster acid mine drainage dam, South Africa as revealed by 16S rRNA gene high-throughput sequencing analysis. Extremophiles, 23, pp. 719-734. DOI:10.1007/s00792-019-01130-7
  20. Ma, L., Banda, J.F., Wang, Y., Yang, Q., Zhao, L., Hao, C. & Dong, H. (2024). Metagenomic insight into the acidophilic functional communities driving elemental geochemical cycles in an acid mine drainage lake. Journal of Hazardous Materials, 466, 133070. DOI:10.1016/j.jhazmat.2023.133070
  21. Malá, J., Hübelová, D., Schrimpelová, K., Kozumplíková, A. & Lejska, S. (2022). Surface watercourses as sources of karst water pollution. International Journal of Environmental Science and Technology, 19(5), 3503-3512. DOI: 10.1007/s13762-021-03440-w
  22. Naghoum, I., Edahbi, M., Melián, J.A.H., Doña Rodriguez, J.M., Durães, N., Pascual, B.A. & Salmoun, F. (2025). Passive Treatment of Acid Mine Drainage Effluents Using Constructed Wetlands: Case of an Abandoned Iron Mine, Morocco. Water, 17(5), 687. DOI:10.3390/w17050687
  23. Qin, S., Li, X., Huang, J., Li, W., Wu, P., Li, Q. & Li, L. (2024). Inputs and transport of acid mine drainage-derived heavy metals in karst areas of Southwestern China. Environmental Pollution, 343, 123243. DOI:10.1016/j.envpol.2023.123243
  24. Rosselló-Mora, R., Thamdrup, B., Schäfer, H., Weller, R. & Amann, R. (1999). The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Systematic and Applied Microbiology, 22(2), pp. 237-248. DOI:10.1016/S0723-2020(99)80071-X
  25. Shang, Y., Wu, X., Wei, Q., Dou, H., Wang, X., Chen, J., Zhang, H., Ma, S. & Zhang, H. (2020). Total arsenic, pH, and sulfate are the main environmental factors affecting the microbial ecology of the water and sediments in Hulun Lake, China. Frontiers in Microbiology, 11, 548607. DOI:10.3389/fmicb.2020.548607
  26. Spear, J.R., Walker, J.J., McCollom, T.M. & Pace, N.R. (2005). Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 102(7), pp. 2555-2560. DOI:10.1073/pnas.0409574102
  27. Stahl, D.A. & De La Torre, J.R. (2012). Physiology and diversity of ammonia-oxidizing archaea. Annual review of microbiology, 66(1), pp. 83-101. DOI:10.1146/annurev-micro-092611-150128
  28. Sun, W., Xiao, T., Sun, M., Dong, Y., Ning, Z., Xiao, E., Tang, S. & Li, J. (2015). Diversity of the sediment microbial community in the Aha watershed (Southwest China) in response to acid mine drainage pollution gradients. Applied and Environmental Microbiology, 81(15), 4874-4884. DOI:10.1128/AEM.00935-15
  29. Teng, W., Kuang, J., Luo, Z. & Shu, W. (2017). Microbial diversity and community assembly across environmental gradients in acid mine drainage. Minerals, 7(6), 106. DOI:10.3390/min7060106
  30. Wang, M., Wang, X., Zhou, S., Chen, Z., Chen, M., Feng, S., Li, J., Shu, W. & Cao, B. (2023). Strong succession in prokaryotic association networks and community assembly mechanisms in an acid mine drainage-impacted riverine ecosystem. Water Research, 243, 120343. DOI:10.1016/j.watres.2023.120343
  31. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology, 73(16), pp. 5261-5267. DOI:10.1128/AEM.00062-07
  32. Whaley-Martin, K.J., Chen, L.X., Nelson, T.C., Gordon, J., Kantor, R., Twible, L.E., Marshall, S., McGarry, S., Rossi, L., Bessette, B., Baron, C., Apte, S., Banfield, J.F. & Warren, L.A. (2023). O2 partitioning of sulfur oxidizing bacteria drives acidity and thiosulfate distributions in mining waters. Nature Communications, 14(1), 2006. DOI:10.1038/s41467-023-37426-8
  33. Woese, C.R., Kandler, O. & Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87(12), pp. 4576-4579. DOI:10.1073/pnas.87.12.4576
  34. Yan, P., Gu, X., Peng, Y., Fan, Y., Zhang, M., Sun, S. & He, S. (2023). Insight into the nutrient change in freshwater ecosystem under ferrous addition: Revealed by phosphorus, nitrogen, and microbial community. Journal of Cleaner Production, 433, 139874. DOI:10.1016/j.jclepro.2023.139874
  35. Yin, Y. & Wang, J. (2019). Enhanced biohydrogen production from macroalgae by zero-valent iron nanoparticles: Insights into microbial and metabolites distribution. Bioresource technology, 282, pp. 110-117. DOI:10.1016/j.biortech.2019.02.128
  36. Zhang, W., Gu, J., Li, Y., Lin, L., Wang, P., Wang, C., Qian, B., Wang, H., Niu, L., Wang, L., Zhang, H., Gao, Y., Zhu, M. & Fang, S. (2019a). New insights into sediment transport in interconnected river–lake systems through tracing microorganisms. Environmental science & technology, 53(8), pp. 4099-4108. DOI:10.1021/acs.est.8b07334
  37. Zhang, X., Tang, S., Wang, M., Sun, W., Xie, Y., Peng, H., Zhong, A., Liu, H., Zhang, X., Yu, H., Giesy, J.P. & Hecker, M. (2019b). Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. Chemosphere, 217, pp. 790-799. DOI:10.1016/j.chemosphere.2018.10.210
  38. Zheng, Y., Sun, Z., Liu, Y., Cao, T., Zhang, H., Hao, M., Chen, R., Dzakpasu, M. & Wang, X. (2022). Phytoremediation mechanisms and plant eco-physiological response to microorganic contaminants in integrated vertical-flow constructed wetlands. Journal of Hazardous Materials, 424, 127611. DOI:10.1016/j.jhazmat.2021.127611
  39. Zou, S., Liu, P., Wang, J., Lu, H., Zhang, Y., Wang, Y. & Li, B. (2025). Characterizing and tracing the heavy metals' spatial distribution in karst surface river affected by acid mine drainage. Environmental Engineering Research, 30(2), pp. 144-159. DOI:10.4491/eer.2024.180
Go to article

Authors and Affiliations

Hong-Ji Zhao
1
Juan Chu
2
Qian Wang
1
Quan-Jia Wu
1
Xiang-Dong Li
1

  1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Jiangsu, China
  2. Ecological Environment Monitoring Centre of Qiandongnan, Guizhou, China
Download PDF Download RIS Download Bibtex

Abstract

The release of phosphorus from construction materials, including those used in environmental engineering facilities, is an underestimated problem. Improper or accidental selection of materials for systems such as filtration or retention structures may lead to surface water contamination with phosphorus. Therefore, it is recommended to test materials and select those with the lowest potential of phosphorus release in all constructions that come into contact with water and discharge excess water to receivers. The aim of this study was to adopt, refine, and test a method for analyzing phosphorus release from mineral materials of various types and origins.As a result of the research, a simplified procedure for testing materials was proposed, which can be applied in most environmental and chemical laboratories. The procedure developed in this work significantly reduces the consumption of chemicals and the amount of wastewater and waste generated in the material assessment. It can serve as an effective and simple tool for selecting materials for green infrastructure facilities, such as green roofs or rain gardens.
Go to article

Bibliography

  1. ASC-A-0003. (2012). The ASC Formblatt A 0003 Bestimmung des Extrahierbaren Gesamtphosphors mit 1n HCL. https://www.scribd.com/document/100736608/ASC-Formblatt-A-0003-Bestimmung-des-extrahierbaren-Gesamtphosphors-mit-1n-HCl#
  2. Berndtsson, J. C., Emilsson, T. & Bengtsson, L. (2006). The influence of extensive vegetated roofs on runoff water quality. Science of The Total Environment, 355, 1, pp. 48–63. DOI:10.1016/j.scitotenv.2005.02.035
  3. Burszta-Adamiak, E. (2012). Analysis of stormwater retention on green roofs. Archives of Environmental Protection, 38, 4, pp. 3–13. DOI:10.2478/v10265-012-0035-3
  4. Cheng, Y., Vaccari, D. A. & Fassman-Beck, E. (2022). Phosphorus Leaching Behavior from Extensive Green Roof Substrates. Journal of Sustainable Water in the Built Environment, 8, 4, 06022003. DOI:10.1061/JSWBAY.0000991
  5. Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. (2013). Eutrophicati on: Causes, Consequences, and Controls in Aquati c Ecosystems. Nature Education Knowledge, 4(4):10. http://www.nature.com/scitable/knowledge/library/eutrophication-causes-consequences-and-controls-in-aquatic-102364466
  6. Czemiel Berndtsson, J. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36, 4, pp. 351–360. DOI:10.1016/j.ecoleng.2009.12.014
  7. DIN 19529:2009-01. (2009). Elution von Feststoffen—Schüttelverfahren zur Untersuchung des Elutionsverhaltens von anorganischen Stoffen mit einem Wasser/Feststoff-Verhältnis von 2 l/kg, Leaching of solid materials—Batch test for the examination of the leaching behaviour of inorganic substances at a liquid to solid ratio of 2 l/kg. Beuth publishing DIN. https://www.beuth.de/de/norm/din-19529/104286195
  8. Fachempfehlung (2017). Fachempfehlung für Projektierung und Bau von privaten, künstlich angelegten Bade-, Schwimmteichen und Naturpools. Schweizerischer Verband für naturnahe Badegewässer und Pflanzenkläranlagen (SVBP). https://www.yasiflor-gartenbau.ch/wp-content/uploads/Fachempfehlung-Verband-SVBP-Schwimmteich-und-Biopoolbauer-Verband.pdf
  9. FLL. (2013). Swimming Pools with Biological Water Purification. https://shop.fll.de/de/swimming-pools-with-biological-water-purification.html
  10. Hachoumi, I., Pucher, B., De Vito-Francesco, E., Prenner, F., Ertl, T., Langergraber, G., Fürhacker, M. & Allabashi, R. (2021). Impact of Green Roofs and Vertical Greenery Systems on Surface Runoff Quality. Water, 13, 19. DOI:10.3390/w13192609
  11. Hamisi, R., Renman, G., Renman, A. & Wörman, A. (2019). Modelling Phosphorus Sorption Kinetics and the Longevity of Reactive Filter Materials Used for On-Site Wastewater Treatment. Water, 11, 4, 811. DOI:10.3390/w11040811
  12. Janßen, E. (2004). Extraction of soluble Phosphorus in Soil, Sludge, Biowaste and Treated Biowaste (HORIZONTAL – 25; p. 18). https://horizontal.ecn.nl/docs/society/horizontal/hor_desk_25_solubleP_revised.pdf
  13. Karczmarczyk, A., Baryła, A., Fronczyk, J., Bus, A. & Mosiej, J. (2020). Phosphorus and Metals Leaching from Green Roof Substrates and Aggregates Used in Their Composition. Minerals, 10, 2, 112. DOI:10.3390/min10020112
  14. Karczmarczyk, A., Bus, A. & Baryła, A. (2018). Phosphate Leaching from Green Roof Substrates—Can Green Roofs Pollute Urban Water Bodies? Water, 10, 2, 199. DOI:10.3390/w10020199
  15. Karczmarczyk, A. & Kaminska, M. (2020). Phosphorus leaching from substrates commonly used in rain gardens. E3S Web of Conferences, 171, 01003. DOI:10.1051/e3sconf/202017101003
  16. Liu, W., Pei, Q., Dong, W. & Chen, P. (2022). Study on the purifi cation capacity of rain garden paving structures for rainfall runoff pollutants. Archives of Environmental Protection, 48, 3, pp. 28–36. DOI:DOI 10.24425/aep.2022.142687
  17. McGrane, S. J. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrological Sciences Journal, 61, 13, pp. 2295–2311. DOI:10.1080/02626667.2015.1128084
  18. Miller, J. D. & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, pp. 345–362. DOI:10.1016/j.ejrh.2017.06.006
  19. Müller, A., Österlund, H., Marsalek, J. & Viklander, M. (2020). The pollution conveyed by urban runoff: A review of sources. Science of The Total Environment, 709, 136125. DOI:10.1016/j.scitotenv.2019.136125
  20. Murat-Błażejewska, S. & Błażejewski, R. (2020). Converting sewage holding tanks to rainwater harvesting tanks in Poland. Archives of Environmental Protection, 46, 4, pp. 121–131. DOI:DOI 10.24425/aep.2020.135770
  21. Nawaz, R., McDonald, A. & Postoyko, S. (2015). Hydrological performance of a full-scale extensive green roof located in a temperate climate. Ecological Engineering, 82, pp. 66–80. DOI:10.1016/j.ecoleng.2014.11.061
  22. Palla, A., Gnecco, I. & Lanza, L. G. (2010). Hydrologic Restoration in the Urban Environment Using Green Roofs. Water, 2, 2, 2. DOI:10.3390/w2020140
  23. Reddy, K. R., Wang, Y., DeBusk, W. F., Fisher, M. M. & Newman, S. (1998). Forms of soil phosphorus in selected hydrologic units of the Florida Everglades. Soil Science Society of America Journal, 62, 4, pp. 1134–1147. DOI:10.2136/sssaj1998.03615995006200040039x
  24. Richardson, C. J. & Reddy, K. r. (2013). Methods for Soil Phosphorus Characterization and Analysis of Wetland Soils. In Methods in Biogeochemistry of Wetlands, pp. 603–638. John Wiley and Sons, Ltd. DOI:10.2136/sssabookser10.c32
  25. Rowe, D. B. (2011). Green roofs as a means of pollution abatement. Environmental Pollution, 159, 8, pp. 2100–2110. DOI:10.1016/j.envpol.2010.10.029
  26. Santos, C., Monteiro, C. M., Santos, C. & Monteiro, C. M. (2022). Green Roofs Influence on Stormwater Quantity and Quality: A Review. In Urban Green Spaces. IntechOpen. DOI:10.5772/intechopen.101952
  27. Sharma, R. & Malaviya, P. (2021). Management of stormwater pollution using green infrastructure: The role of rain gardens. WIREs Water, 8, 2, e1507. DOI:10.1002/wat2.1507
  28. Spohn, M. (2020). Phosphorus and carbon in soil particle size fractions: A synthesis. Biogeochemistry, 147, pp. 225–242. DOI:10.1007/s10533-019-00633-x
  29. Standardy (2014). Standardy pro plánování, stavbu a provoz koupacích jezírek a biobazénů. Asociace biobazénů a koupacích jezírek (ABAJ). https://www.jezirka-biobazeny.cz/cs/biobazeny/koupaci-jezirka-a-biobazeny/standardy-pro-stavbu-a-provoz/
  30. Sýkora, J. (2015). Klasifikace materiálu využívaného pro stavbu zahradních jezírek, Classification of material used for the construction of garden ponds. Vysoké ucení technické v Brne Fakulta chemická, Bachelor’s thesis FCH-BAK0806/2014. https://dspace.vutbr.cz/xmlui/handle/11012/38680
  31. Upmeier, M. (2014). Projektbericht: Ermittlung einer geeigneten Methode zur Bestimmung der Gehalte von Phosphor in Substraten fur Schwimmteiche unter besonderer Berucksichtigung der biologischen Verfugbarkwit (Pflanzen, Algen); Determination of a suitable method for determining the phosphorus content in substrates for swimming ponds with special consideration of the biological availability (plants, algae). http://185.88.215.29/leistungsprofil/forschung/phosphor-in-substraten-fuer-schwimmteiche.html
  32. Vahidi, E. & Zhao, F. (2017). Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction. Journal of Environmental Management 203, pp. 255–263. DOI:10.1016/j.jenvman.2017.07.076
  33. Walczak, W., Serafin, A. & Siwiec, T. (2023). Natural Swimming Ponds as an Application of Treatment Wetlands—A Review. Water, 15, 10, 10. DOI:10.3390/w15101878
  34. Wang, C., Zhang, Y., Li, H. and Morrison, R. J. (2013). Sequential extraction procedures for the determination of phosphorus forms in sediment. Limnology, 14, 2, pp. 147–157. DOI:10.1007/s10201-012-0397-1
  35. Wiegman, A. R. H., Myers, G. H., Augustin, I. C., Kubow, M. L., Fein-Cole, M. J., Perillo, V. L., Ross, D. S., Diehl, R. M., Underwood, K. L., Bowden, W. B. & Roy, E. D. (2022). Potential for soil legacy phosphorus release from restored riparian wetlands within an agricultural landscape. Biogeochemistry, 161, 2) pp. 137–156. DOI:10.1007/s10533-022-00972-2
Go to article

Authors and Affiliations

Agnieszka Karczmarczyk
1
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Poland
Download PDF Download RIS Download Bibtex

Abstract

Thallium, a highly toxic heavy metal, presents significant analytical challenges due to its low concentrations in diverse sample matrices. Consequently, there is a growing interest in developing innovative electrode materials with superior sensitivity, selectivity, and low detection limits to replace traditional mercury-based electrodes in voltammetry. This study focused on modifying a glassy carbon electrode (GCE) with silver nanostructures stabilized by starch derivatives and evaluating the impact of this modification on key electrode parameters. The modified electrode (GCE/AgNPs-E1451R) was applied for thallium determination using anodic stripping voltammetry. Analyses were conducted in a base electrolyte (EDTA solution) and a real groundwater sample from the Wielkopolska (Greater Poland) region. Silver nanostructures were synthesized using a doubly modified starch hydrolysate (E1451R) subjected to oxidation and acetylation. The stripping peak current of thallium showed linearity over concentrations ranging from 35 to 550 μg/L (1.71×10⁻⁷ to 2.69×10⁻⁶ M). The calculated limit of detection (LOD) was 9.75 μg/L (1.62×10⁻⁷ M). The GCE/AgNPs-E1451R electrode offers notable advantages, including a broad detection range, reduced analysis time by eliminating prolonged pre-concentration steps, and non-toxicity compared to mercury-based electrodes, providing a safer alternative for analytical applications, and making the electrode a promising alternative for environmental monitoring.
Go to article

Bibliography

  1. Bankura, K., Rana, D., Mollick, M.M.R., Pattanayak, S., Bhowmick, B., Sah,a N.R., Roy, I., Midya, T., Barman, G. & Chattopadhyay, D. (2015). Dextrin-mediated synthesis of AgNPs for colorimetric assays of Cu2+ ion and AuNPs for catalytic activity, International Journal of Biological Macromolecules, 80, pp. 309-316. DOI:10.1016/j.ijbiomac.2015.06.058.
  2. Chojniak-Gronek, J.M., Jałowiecki, Ł. & Płaza, G.A. (2022). Bioeffects of silver nanoparticles (AgNPs) synthesized by producer of biosurfactant Bacillus subtilis strain: in vitro cytotoxicity, antioxidant properties and metabolic activities of mammalian cells, Archives of Environmental Protection, 48(4), pp. 45–52. DOI:10.24425/aep.2022.143708.
  3. Harris P.J.F. (2005). New perspectives on the structure of graphitic carbons, Critical Reviews in Solid State and Materials Sciences, 30, pp. 235-253. DOI:10.1080/10408430500406265.
  4. Hassan, K.M., Gaber, S.E., Altahan, M.F. & Azzem, M.A. (2020). Single and simultaneous voltammetric sensing of lead(II), cadmium(II) and zinc(II) using a bimetallic Hg-Bi supported on poly(1,2-diaminoanthraquinone)/glassy carbon modified electrode, Sensing and Bio-Sensing Research, 29, 100369. DOI:10.1016/j.sbsr.2020.100369 .
  5. Jenkins, G.M. & Kawamura, K. (1971). Structure of Glassy Carbon, Nature, 231, pp. 175-176, DOI:10.1038/231175a0.
  6. Jurkiewicz, K., Duber, S., Fischer, H.E. & Burian, A. (2017). Modelling of glass-like carbon structure and its experimental verification by neutron and X-ray diffraction, Journal of Applied Crystallography, 50, pp. 36-48. DOI:10.1107/S1600576716017660.
  7. Karbowska, B., Rębiś, T. & Milczarek, G. (2017) Mercury-modified Lignosulfonate-stabilized Gold Nanoparticles as an Alternative Material for Anodic Stripping Voltammetry of Thallium, Electroanalysis, 29, pp. 2090-2097. DOI:10.1002/elan.201700090.
  8. Karbowska, B., Rębiś, T. & Milczarek, G. (2018). Electrode modified by reduced graphene oxide for monitoring of total thallium in grain products, International Journal of Environmental Research and Public Health, 15, 653. DOI:10.3390/ijerph15040653.
  9. Karbowska, B., Zembrzuski, W., Wojtkowiak, T. & Łukaszewski, Z. (2014). Determination ot thallium by differential pulse anodic stripping voltammetry, Przemysł Chemiczny, 93, pp. 978-982. DOI:10.12916/przemchem.2014.978.
  10. Karbowska, B., Zembrzuski, W., Zembrzuska, J. (2022). Mobile forms vs the total content of thallium in activated sludge, Archives of Environmental Protection, 48(3), 21-27. DOI: 10.24425/aep.2022.142686
  11. Konował, E., Modrzejewska-Sikorska, A. & Milczarek G. (2015). Synthesis and multifunctional properties of lignosulfonate-stabilized gold nanoparticles, Materials Letters, 159, pp. 451-454. DOI:10.1016/j.matlet.2015.07.052.
  12. Konował, E., Sybis, M. & Prochaska, K. (2024). Surface Activity of Hydrophobized Modified Starch Hydrolysates in Mixed Systems, Materials, 17(22), 5526. DOI:10.3390/ma17225526.
  13. Krzyżewska, I., Kyzioł-Komosińska, J., Rosik-Dulewska, C., Czupioł, J. & Antoszczyszyn-Szpicka, P. (2016). Archives of Environmental Protection, 42(1) pp. 87–101. DOI:10.1515/aep-2016-0011.
  14. Modrzejewska‐Sikorska, A., Konował, E., Karbowska, B., & Szatkowska, D. (2023). New electrode material GCE/AgNPs‐D3 as an electrochemical sensor used for the detection of thallium ions. Electroanalysis, 35(5), e202200281. DOI:10.1002/elan.202200281.
  15. Praveena, G., Yagnam, S., Banoth, L., Trivedi, R. & Prakasham, R.S. (2020). Bacterial biosynthesis of nanosilver: a green catalyst for the synthesis of (amino pyrazolo)-(phenyl)methyl naphth-2-ol derivatives and their antimicrobial potential, New Journal of Chemistry, 44, pp. 13046-13061. DOI:10.1039/d0nj90128h.
  16. Pesin, L.A. (2002). Review: Structure and properties of glass-like carbon, Journal of Materials Science, 37, pp. 1-28. DOI:10.1023/A:1013100920130.
  17. Švancara, I., Ostapczuk, P., Arunachalam, J., Emons, H., & Vytřas, K. (1997). Determination of thallium in environmental samples using potentiometric stripping analysis. Method development, Electroanalysis, 9(1) pp. 26–31. DOI:10.1002/elan.1140090108.
  18. Van der Linden W.E. & Dieker J. W. (1980). Glassy carbon as electrode material in electro- analytical chemistry, Analytica Chemica Acta, 119, pp. 1-24. DOI:10.1016/S0003-2670(00)00025-8.
  19. Wang, J., Analytical electrochemistry, 2nd Edition, Wiley – VCH, New York, 2000, pp. 171-200.
  20. Wang, J., Lu, J., Kirgöz, U. A., Hocevar, S. B. & Ogorevc, B. (2001). Insights into the anodic stripping voltammetric behavior of bismuth film electrodes, Analytica Chemica Acta, 434, pp. 29-34. DOI:10.1016/S0003-2670(01)00818-2.
  21. Xiao, H., Wang, W., Pi, S., Cheng, Y. & Xie, Q. (2020). Anodic stripping voltammetry analysis of mercury(II) on a pyridine-Au/pyridine/glassy carbon electrode, Sensors and Actuatuators B: Chemical, 317, 128202. DOI:10.1016/j.snb.2020.128202.
  22. Zapór, L. (2016). Effects of silver nanoparticles of different sizes on cytotoxicity and oxygen metabolism disorders in both reproductive and respiratory system cells, Archives of Environmental Protection, 42(4), pp. 32–47. DOI:10.1515/aep-2016-0038.
Go to article

Authors and Affiliations

Bożena Karbowska
1
ORCID: ORCID
Anna Modrzejewska-Sikorska
1
Anna Wiktoria Skowron
1
Emilia Konował
1

  1. Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Poland
Download PDF Download RIS Download Bibtex

Abstract

Current research on microbially mediated Sb(III) biomineralization has mainly focused on the role of polysaccharides in extracellular polymeric substances (EPS). In this study, we systematically investigated and confirmed the dominant regulatory role of protein components in EPS during Sb(III) biomineralization, thereby overturning the previous assumption that EPS polysaccharides are the primary functional component. A highly Sbresistant strain, Acinetobacter johnsonii, was isolated. This strain exhibits remarkable characteristics: it can tolerate up to 21 mM Sb(III) stress, directionally mineralize Sb(III) into octahedral Sb2O3 microcrystals, and achieve a removal rate of up to 90% for 11 mM Sb(III). These results demonstrate its high Sb resistance and efficient, directional biomineralization capability. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and proteomic analysis confirmed that extracellular proteins (e.g. 34 kDa and 20 kDa) were upregulated under Sb(III) stress. Combined with EPS inactivation experiments, these results revealed the regulatory role of proteins: linearized peptide chains provide additional binding sites for Sb(III), promoting the formation of larger Sb2O3 microcrystals. This study thus clarifies the specific molecular mechanism underlying protein-mediated Sb(III) biomineralization. Furthermore, by integrating the microbial biomineralization mechanism with phytoremediation, a synergistic effect of “Sb immobilization and growth promotion” was achieved. This not only significantly reduced Sb accumulation in various rice tissues (roots, leaves, polished grains, and stalks) but also increaseds plant height and stabilized yield under Sb(III) stress. Our findings provide a novel application model of “pollution control and crop protection” for the remediation of Sb-contaminated farmlands
Go to article

Bibliography

  1. Cai, Yongbing, Yuting Mi, and Hua Zhang. (2016). Kinetic modeling of antimony(III) oxidation and sorption in soils. Journal of Hazardous Materials, 316, pp. 102-109. DOI:10.1016/j.jhazmat.2016.05.027.
  2. Chen, Yin, Wenjun Mao, Hongwen Tao, Weiming Zhu, Xiaohui Qi, Yanli Chen, Hongyan Li, Chunqi Zhao, Yupin Yang, Yujiao Hou, Chunyan Wang, and Na Li. (2011). Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresource Technology, 102, 17, pp. 8179-8184. DOI:10.1016/j.biortech.2011.06.048.
  3. Chen, Zhao, Bingqing Xia, Yang Yang, Shiwen Hu, Kuan Cheng, Pengfei Cheng, Shan Wang, Guojun Chen, Qi Wang, Haibo Dong, Chao Guo, Yating Chen, and Tongxu Liu. (2024). Evaluating the influence of alternating flooding and drainage on antimony spe-ciation and translocation in a soil-rice system. Science of The Total Environment, 957, pp. 177721. DOI:10.1016/j.scitotenv.2024.177721.
  4. Cui, Linlin, Ling Fan, Zhanfei Li, Junjun Wang, Ran Chen, Yejuan Zhang, Jinju Cheng, Xuel-ing Wu, Jiaokun Li, Huaqun Yin, Weiming Zeng, and Li Shen. (2021). Characterization of extracellular polymeric substances from Synechocystis sp. PCC6803 under Cd (II), Pb (II) and Cr (VI) stress. Journal of Environmental Chemical Engineering, 9, 4, pp. 105347. DOI:10.1016/j.jece.2021.105347.
  5. Devi, Rajni, Biswaranjan Behera, Md Basit Raza, Vikas Mangal, Muhammad Ahsan Altaf, Ravinder Kumar, Awadhesh Kumar, Rahul Kumar Tiwari, Milan Kumar Lal, and Bra-jesh Singh. (2021). An Insight into Microbes Mediated Heavy Metal Detoxification in Plants: a Review. Journal of Soil Science and Plant Nutrition, 22, 1, pp. 914-936. DOI:10.1007/s42729-021-00702-x.
  6. Dong, Hailiang, Liuqin Huang, Linduo Zhao, Qiang Zeng, Xiaolei Liu, Yizhi Sheng, Liang Shi, Geng Wu, Hongchen Jiang, Fangru Li, Li Zhang, Dongyi Guo, Gaoyuan Li, Weiguo Hou, and Hongyu Chen. (2022). A critical review of mineral–microbe interac-tion and co-evolution: mechanisms and applications. National Science Review, 9, 10, pp. 10. DOI:10.1093/nsr/nwac128.
  7. Gaur, Vivek Kumar, Poonam Sharma, Prachi Gaur, Sunita Varjani, Huu Hao Ngo, Wenshan Guo, Preeti Chaturvedi, and Reeta Rani Singhania. (2021). Sustainable mitigation of heavy metals from effluents: Toxicity and fate with recent technological advancements. Bioengineered, 12, 1, pp. 7297-7313. DOI:10.1080/21655979.2021.1978616.
  8. He, Jun, Yubin Hong, Yihang Zhao, Xinyu Hong, Xinye Cheng, Yongjian Xie, Qingqing Xiao, Wanrou Liu, Lihua Dong, Li’an Hou, and Diyun Chen. (2025). Fate and behavior of uranium biomineralization by the native Burkholderia sp. S1 isolated from tailing are-as. Journal of Environmental Chemical Engineering, 13, 3, pp. 116602. DOI:10.1016/j.jece.2025.116602.
  9. He, Si-Xue, You-Jing Peng, Jia-Yi Chen, Chen-Jing Liu, Yue Cao, Wei Li, and Lena Q. Ma. (2023). Antimony uptake and speciation, and associated mechanisms in two As-hyperaccumulators Pteris vittata and Pteris cretica. Journal of Hazardous Materials, 455, pp. 131607. DOI:10.1016/j.jhazmat.2023.131607.
  10. He, Yizhou, Yang Yang, Wenting Chi, Shiwen Hu, Guojun Chen, Qi Wang, Kuan Cheng, Chao Guo, Tongxu Liu, and Bingqing Xia. (2024). Biogeochemical cycling in paddy soils controls antimony transformation: Roles of iron (oxyhydr)oxides, organic matter and sulfate. Journal of Hazardous Materials, 464, pp. 32979. DOI:10.1016/j.jhazmat.2023.132979.
  11. Huo, Xiaokang, Yumeng Zhou, Ning Zhu, Xiaopeng Guo, Wen Luo, Yan Zhuang, Feifan Leng, and Yonggang Wang. (2024). Soil Organic Matter and Total Nitrogen Reshaped Root-Associated Bacteria Community and Synergistic Change the Stress Resistance of Codonopsis pilosula. Molecular Biotechnology, 67, pp. 2545-2561. DOI:10.1007/s12033-024-01217-3.
  12. Jabłońska-Czapla et al. (2022). Antimony speciation in soils in areas subjected to industrial anthropopressure. Archives of Environmental Protection, 42, pp. 5. DOI:10.24425/aep.2022.140765.
  13. Jabłońska-Czapla, Magdalena, Marzena Rachwał, Katarzyna Grygoyć, and Małgorzata Wawer-Liszka. (2024). Application of soil magnetometry and geochemical methods to investigate soil contamination with antimony. Environmental Geochemistry and Health, 46, 8, pp. 287. DOI:10.1007/s10653-024-02086-0.
  14. Jabłońska-Czapla, Magdalena, Sebastian Szopa, Piotr Zerzucha, Aleksandra Łyko, and Rajmund Michalski. (2015). Chemometric and environmental assessment of arsenic, antimony, and chromium speciation form occurrence in a water reservoir subjected to thermal anthropopressure. Environmental Science and Pollution Research, 22, 20, pp. 15731-15744. DOI:10.1007/s11356-015-4769-z.
  15. Kondakindi, Venkateswar Reddy, Ranjit Pabbati, Priyanka Erukulla, Naga Raju Maddela, and Ram Prasad. (2024). Bioremediation of heavy metals-contaminated sites by microbial extracellular polymeric substances – A critical view. Environmental Chemistry and Ecotoxicology, 6, pp. 408-421. DOI:10.1016/j.enceco.2024.05.002.
  16. Kushkevych, Ivan, Dani Dordević, and Monika Vítězová. (2019). Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Medicine, 14, 1, pp. 66-74. DOI:10.1515/med-2019-0010.
  17. Long, Jiumei, Di Tan, Sihan Deng, and Ming Lei. (2018). Uptake and accumulation of poten-tially toxic elements in colonized plant species around the world’s largest antimony mine area, China. Environmental Geochemistry and Health, 40, 6, pp. 2383-2394. DOI:10.1007/s10653-018-0104-1.
  18. Sadeghi, Sara, Billi Jean Petermann, Joshua J. Steffan, Eric C. Brevik, and Csongor Gedeon. (2023). Predicting microbial responses to changes in soil physical and chemical proper-ties under different land management. Applied Soil Ecology, 188, pp. 104878. DOI:10.1016/j.apsoil.2023.104878.
  19. Shukla, Arpit, Krina Mehta, Jignesh Parmar, Jaimin Pandya, and Meenu Saraf. (2019). Depict-ing the exemplary knowledge of microbial exopolysaccharides in a nutshell. European Polymer Journal, 119, pp. 298-310. DOI:10.1016/j.eurpolymj.2019.07.044.
  20. Si, Meiyan, Yuntao Zhang, Hai Jin, Yongliang Long, Tao Nie, Wei Feng, Qingsong Li, Yichao Lin, Xiaoqian Xu, and Chunhua Wang. (2024). Research progress on acid mine drain-age treatment based on CiteSpace analysis. Archives of Environmental Protection, 50, 4, pp. 104-115. DOI:10.24425/aep.2024.152900.
  21. Wang, Bin-Bin, Xue-Ting Liu, Jian-Meng Chen, Dang-Cong Peng, and Feng He. (2018). Composition and functional group characterization of extracellular polymeric substanc-es (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates. Water Research, 129, pp. 133-142. DOI:10.1016/j.watres.2017.11.008.
  22. Wang, Xiangqin, Fangbai Li, Chaolei Yuan, Bin Li, Tongxu Liu, Chengshuai Liu, Yanhong Du, and Chuanping Liu. (2019). The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO3−. Science of The Total Environment, 650, pp. 633-641. DOI:10.1016/j.scitotenv.2018.09.054.
  23. Wu, Tongliang, Xiaodan Cui, Syed Tahir Ata-Ul-Karim, Peixin Cui, Cun Liu, Tingting Fan, Qian Sun, Hua Gong, Dongmei Zhou, and Yujun Wang. (2022). The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system. Chemosphere, 297, pp. 134147. DOI:10.1016/j.chemosphere.2022.134147.
  24. Yang, Linping, Aijiang Yang, Liyan Song, Wen Cui, Wanping Bian, Aping Niu, Peng Xu, Shouyang He, Shixue Mei, and Xianrong Shi. (2024). Formation of Sb2O3 microcrys-tals by Rhodotorula mucilaginosa. Journal of Hazardous Materials, 469, pp. 134082. DOI:10.1016/j.jhazmat.2024.134082.
  25. Yu, Huang, Xizhe Yan, Wanlin Weng, Sihan Xu, Guizhi Xu, Tianyuan Gu, Xiaotong Guan, Shengwei Liu, Pubo Chen, Yongjie Wu, Fanshu Xiao, Cheng Wang, Longfei Shu, Bo Wu, Dongru Qiu, Zhili He, and Qingyun Yan. (2022). Extracellular proteins of Desul-fovibrio vulgaris as adsorbents and redox shuttles promote biomineralization of anti-mony. Journal of Hazardous Materials, 426, pp. 127795. DOI:10.1016/j.jhazmat.2021.127795.
  26. Yuan, Shi-Jie, Min Sun, Guo-Ping Sheng, Yin Li, Wen-Wei Li, Ri-Sheng Yao, and Han-Qing Yu. (2011). Identification of key constituents and structure of the extracellular polymer-ic substances excreted by Bacillus megaterium TF10 for their flocculation capacity. Environmental science & technology, 45, 3, pp. 1152-1157. DOI:10.1021/es1030905.
  27. Zhang, Kejing, Dawei Zhang, Xiao Li, and Yingwen Xue. (2022). Biomineralization of lead in wastewater: Bacterial reutilization and metal recovery. Journal of Hazardous Materi-als, 421, pp. 126765. DOI:10.1016/j.jhazmat.2021.126765.
  28. Zhang, Liping, Qianqian Yang, Shiliang Wang, Wanting Li, Shaoqing Jiang, and Yan Liu. (2017). Influence of silicon treatment on antimony uptake and translocation in rice genotypes with different radial oxygen loss. Ecotoxicology and Environmental Safety, 144, pp. 572-577. DOI:10.1016/j.ecoenv.2017.06.076.
  29. Zhang, Yu, Si-Yu Zhao, Ruo-Han Zhang, B. Larry Li, Yu-Ying Li, Hui Han, Peng-Fei Duan, and Zhao-Jin Chen. (2024). Screening of plant growth-promoting rhizobacteria helps alleviate the joint toxicity of PVC+Cd pollution in sorghum plants. Environmental Pol-lution, 355, pp. 124201. DOI:10.1016/j.envpol.2024.124201.
  30. Zhou, Gen-Tao, Ye-Bin Guan, Qi-Zhi Yao, and Sheng-Quan Fu. (2010). Biomimetic minerali-zation of prismatic calcite mesocrystals: Relevance to biomineralization. Chemical Ge-ology, 279, 3-4, pp. 63-72. DOI:10.1016/j.chemgeo.2010.08.020.
Go to article

Authors and Affiliations

Xianrong Shi
1
Wanping Bian
2
Linping Yang
1
Jiuqin Xian
Kun Liu
1
ORCID: ORCID
Qian Wang
1
Aijiang Yang
1
Aping Niu
1
Shixue Mei
1

  1. Guizhou University, College of Resources and Environmental Engineering, Guizhou Karst Environmental EcosystemsObservation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment,Ministry of Education, Guizhou University, Guiyang 550025, China
  2. Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences, Chongqing, 400714, China
Download PDF Download RIS Download Bibtex

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs ), widely used for their analgesic and anti-inflammatory properties, are increasingly recognized as emerging contaminants in aquatic environments. Despite their therapeutic value for humans, their persistence, bioactivity, and widespread use contribute to continuous input into surface waters through wastewater effluents and agricultural runoff. This review provides a comprehensive synthesis of the current knowledge regarding the occurrence, distribution, and ecological impacts of NSAIDs in aquatic ecosystems. We examine the primary sources of emission, the physicochemical properties influencing their transport and bioaccumulation, and analyze global monitoring data on concentrations of key NSAIDs in freshwater systems. Particular attention is given to their effects on various aquatic organisms, including bacteria, phytoplankton, zooplankton, invertebrates, and vertebrates, with documented outcomes such as developmental abnormalities, physiological disruptions, and oxidative stress. Risk assessment metrics, such as risk quotients (RQ) based on predicted or measured environmental concentrations and predicted no-effect concentrations (PNECs), are evaluated to highlight zones of heightened ecological threat. Finally, we discuss the implications of current trends, forecast future risks, and suggest directions for mitigation through improved wastewater treatment technologies, regulatory measures, and public awareness. NSAIDs, often perceived as benign pharmaceuticals, represent a silent
but significant ecological risk requiring urgent interdisciplinary attention.
Go to article

Bibliography

  1. Backhaus, T., Faust, M. (2012). Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environmental science & technology 46, 5, 2564-2573. DOI:10.1021/es2034125.
  2. Belov, V.S., N. V. Ivanova, A. I. Samarkin. (2022). On the Mechanisms of Pharmaceutical Pollution of the Environment Risk Reduction, in: Industry 4.0: Fighting Climate Change in the Economy of the Future, Zavyalova, E.B., Popkova, E.G. (Eds.). Cham: Springer International Publishing, pp. 119–28. DOI:10.1007/978-3-030-79496-5_10.
  3. Bindu, S., Mazumder, S. ,Bandyopadhyay, U. (2020). Non-steroidal anti-inflammatory drugs (NSAIDs ) and organ damage: A current perspective. Biochemical Pharmacology 180, 114147. DOI:10.1016/j.bcp.2020.114147.
  4. Buser, H.-R., Müller, M.D., Theobald, N. (1998) Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North sea. Environmental Science & Technology 32, 188-192. DOI:10.1021/es9705811.
  5. Cycoń, M., Borymski, S. , Żołnierczyk, B., Piotrowska-Seget, Z. (2016). Variable Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs ) on Selected Biochemical Processes Mediated by Soil Microorganisms. Frontiers in Microbiology 7, 1969. DOI:10.3389/fmicb.2016.01969.
  6. Divya Lakshmi, S., Geetha, B.V., Vibha, M. (2024). From prescription to pollution: The ecological consequences of NSAIDs in aquatic ecosystems. Toxicology Reports 13, 101775. DOI:10.1016/j.toxrep.2024.101775.
  7. Ebele, A.J., Abou-Elwafa Abdallah, M., Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3, 1, 1–16. DOI:10.1016/j.emcon.2016.12.004.
  8. Eggen, R. I., Hollender, J., Joss, A., Schärer, M., & Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environmental Science & Technology 48, 14, 7683–7689. DOI:10.1021/es500907n
  9. Fang, T.-H., Nan, F.-H., Chin, T.-S., Feng, H.-M. (2012). The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Marine Pollution Bulletin 64, 7, 1435–44. DOI:10.1016/j.marpolbul.2012.04.008.
  10. Farkas, R., Mireisz, T., Toumi, M., Abbaszade, G., Sztráda, N., Tóth, E. (2023). The Impact of Anti-Inflammatory Drugs on the Prokaryotic Community Composition and Selected Bacterial Strains Based on Microcosm Experiments. Microorganisms 11, 6, 1447. DOI: 10.3390/microorganisms11061447.
  11. Freitas, R., Silvestro, S., Coppola, F., Meucci, V., Battaglia, F., Intorre, L., Soares, A.M.V.M., Pretti, C., Faggio, C. (2020). Combined Effects of Salinity Changes and Salicylic Acid Exposure in Mytilus Galloprovincialis. The Science of the Total Environment 715,136804. DOI:10.1016/j.scitotenv.2020.136804.
  12. Ghlichloo, I., Gerriets, I.V. (2025). Nonsteroidal Anti-Inflammatory Drugs (NSAIDs ), in: StatPearls. Treasure Island (FL): StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK547742/.
  13. Hejna, M., Kapuścińska, D. , Aksmann, A. (2022). Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. International Journal of Environmental Research and Public Health 19, 13, 7717. DOI:10.3390/ijerph19137717.
  14. Kidd, K. A., Backhaus, T., Brodin, T., Inostroza, P. A., & McCallum, E. S. (2024). Environmental risks of pharmaceutical mixtures in aquatic ecosystems: Reflections on a decade of research. Environmental Toxicology and Chemistry 43, 3), 549-558. DOI:10.1002/etc.5726
  15. Kim, S.D., Cho, J., Kim, I.S. , Vanderford, B.J., Snyder, S.A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research 41, 5, 1013–21. DOI:10.1016/j.watres.2006.06.034.
  16. Leverett, D., Merrington, G., Crane, M., Ryan, J., Wilson, I. (2021). Environmental quality standards for diclofenac derived under the European Water Framework Directive: 1. Aquatic organisms. Environmental Sciences Europe 33, 1, 133. DOI:10.1186/s12302-021-00574-z.
  17. Lin, W.-C., Chen, H.-C.,. Ding, W.-H. (2005). Determination of pharmaceutical residues in waters by solid-phase extraction and large-volume on-line derivatization with gas chromatography–mass spectrometry. Journal of Chromatography A 1065,2 , 279–85. DOI:10.1016/j.chroma.2004.12.081.
  18. Ma, J., Cui, Y., Kuang, P., Ma, C., Zhang, M., Chen, Z., & Zhao, K. (2023). Study on the removal efficiency of antibiotics in coastal wetlands by Suaeda and Nelumbo nucifera. Archives of Environmental Protection 49(2), 59-65. DOI:10.24425/aep.2023.145897.
  19. Marjanović, T., Bogunović, M., Tenodi, S., Vasić, V., Kerkez, D., Prodanović, J., & Ivančev-Tumbas, I. (2023). Advanced treatment of the municipal wastewater by lab-scale hybrid ultrafiltration. Sustainability 15, 12, 9519. DOI: 10.3390/su15129519
  20. Michalaki, A., Grintzalis, K. (2023). Acute and Transgenerational Effects of Non-Steroidal Anti-Inflammatory Drugs on Daphnia Magna. Toxics 11, 4, 320. DOI:10.3390/toxics11040320.
  21. Montuori, P., Zahra Shojaeian, S., Pennino, F., D’Angelo, D., Sorrentino, M., Di Sarno, S., Nubi, R., Nardo, A., Triassi, M. (2024). Consumer Awareness and Knowledge Regarding Use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs ) in a Metropolitan Area. Frontiers in Pharmacology 15. DOI:10.3389/fphar.2024.1362632.
  22. Mussa, Z.H., Fadhil Al-Qaim, F., Jawad, A.H., Scholz, M., Mundher Yaseen. Z. (2022). A Comprehensive Review for Removal of Non-Steroidal Anti-Inflammatory Drugs Attained from Wastewater Observations Using Carbon-Based Anodic Oxidation Process. Toxics 10, 10, 598. DOI: 10.3390/toxics10100598.
  23. Mustafa, S.A., Jasim Al-Rudainy, A., Mohammad Salman, N. (2024). Effect of environmental pollutants on fish health: An overview. Egyptian Journal of Aquatic Research 50, 2, 225–33. DOI:10.1016/j.ejar.2024.02.006.
  24. Näslund, J., Asker, N., Fick, J., Joakim Larsson, D.G., Norrgren, L. (2020). Naproxen Affects Multiple Organs in Fish but Is Still an Environmentally Better Alternative to Diclofenac. Aquatic Toxicology (Amsterdam, Netherlands) 227, 105583. DOI:10.1016/j.aquatox.2020.105583.
  25. Oaks, J.L., Gilbert, M., Virani, M.Z., Watson, R.T., Meteyer, C.U., Rideout, B.A, Shivaprasad, H.L. et al. (2004). Diclofenac Residues as the Cause of Vulture Population Decline in Pakistan. Nature 427 (6975), 630–33. DOI:10.1038/nature02317.
  26. Ossowicz-Rupniewska, P. E., Kucharska, E., Klebeko, J., Kopciuch, E., Bilska, K., & Janus, E. (2023). Effect of the type of amino acid on the biodegradation of ibuprofen derivatives. Archives of Environmental Protection 49(4). DOI:10.24425/aep.2023.148685.
  27. Pashaei, R., Dzingelevičienė, R., Bradauskaitė, A., Lajevardipour, A., Mlynska-Szultka, M., Dzingelevičius, N., Raugelė, S. et al. (2022). Pharmaceutical and Microplastic Pollution before and during the COVID-19 Pandemic in Surface Water, Wastewater, and Groundwater. Water 14 (19), 3082. DOI:10.3390/w14193082.
  28. Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C.U., Mohan, D. (2019). Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chemical Reviews 119 (6), 3510–3673. DOI:10.1021/acs.chemrev.8b00299.
  29. Pinto, I., Simões, M, Gomes, I.B. (2022). An Overview of the Impact of Pharmaceuticals on Aquatic Microbial Communities. Antibiotics 11 (12), 1700. DOI:10.3390/antibiotics11121700.
  30. Pires, P., Pereira, A.M.P.T., Pena, A., Silva, L.J.G. (2024). Non-Steroidal Anti-Inflammatory Drugs in the Aquatic Environment and Bivalves: The State of the Art. Toxics 12 (6), 415. DOI:10.3390/toxics12060415.
  31. Placova, K., Halfar, J., Brozova, K., Heviankova, S. (2023). Issues of Non-Steroidal Anti-Inflammatory Drugs in Aquatic Environments: A Review Study. Engineering Proceedings 57 (1), 13. DOI:10.3390/engproc2023057013.
  32. Rastogi, A., Tiwari, M.K., Ghangrekar, M.M. (2021). A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs ). Journal of Environmental Management 300, 113694. DOI:10.1016/j.jenvman.2021.113694.
  33. Rosińska, A. (2022). Emerging pollutants wyzwaniem dla gospodarki wodno-ściekowej: monografia. Częstochowa: Wydawnictwo Politechniki Częstochowskiej.
  34. Sehonova, P., Plhalova, L., Blahova, J., Doubkova, V., Prokes, M., Tichy, F., Fiorino, E., Faggio, C., Svobodova, Z. (2017). Toxicity of Naproxen Sodium and Its Mixture with Tramadol Hydrochloride on Fish Early Life Stages. Chemosphere 188, 414–23. DOI:10.1016/j.chemosphere.2017.08.151.
  35. Sim, W.-J., Lee, J.-W., Lee, E.-S., Shin, S.-K., Hwang, S.-R., Oh, J.-E. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82 (2), 179–86. DOI:10.1016/j.chemosphere.2010.10.026.
  36. Sohail, R., Mathew, M., Patel, K.K., Reddy, S.A., Haider, Z., Naria, M., Habib, A., Abdin, Z.U., Razzaq Chaudhry, W., Akbar, A. (2023). Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs ) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 15 (4), e37080. DOI:10.7759/cureus.37080.
  37. Sørensen, L., Schaufelberger, S., Igartua, A., Størseth, T.R., Beathe Øverjordet, I. (2023). Non-target and suspect screening reveal complex pattern of contamination in Arctic marine zooplankton. Science of The Total Environment 864, 161056. DOI:10.1016/j.scitotenv.2022.161056.
  38. Stancova, V., Plhalova, L., Blahova, J., Zivna, D., Bartoskova, M., Siroka, Z., Marsalek, P., Svobodova, Z. (2017). Effects of the pharmaceutical contaminants ibuprofen, diclofenac, and carbamazepine alone, and in combination, on oxidative stress parameters in early life stages of tench (Tinca tinca). Veterinární medicína 62 (2), 90–97. DOI:10.17221/125/2016-VETMED.
  39. Stuer-Lauridsen, F., Birkved, M., Hansen, L.P., Lützhøft, H.C.,Halling-Sørensen, B. (2000). Environmental Risk Assessment of Human Pharmaceuticals in Denmark after Normal Therapeutic Use. Chemosphere 40 (7), 783–93. DOI:10.1016/s0045-6535(99)00453-1.
  40. Subedi, B., Codru, N., Dziewulski, D.M., Wilson, L.R., Xue, J., Yun, S., Braun-Howland, E., Minihane, C., Kannan, K. (2015). A Pilot Study on the Assessment of Trace Organic Contaminants Including Pharmaceuticals and Personal Care Products from On-Site Wastewater Treatment Systems along Skaneateles Lake in New York State, USA. Water Research 72, 28–39. DOI:10.1016/j.watres.2014.10.049.
  41. Świacka, K., Michnowska, A., Maculewicz, J., Caban, M., Smolarz, K. (2021). Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. Environmental Pollution 273, 115891. DOI:10.1016/j.envpol.2020.115891.
  42. Thomas, K.V., Hilton, M.J. (2004). The occurrence of selected human pharmaceutical compounds in UK estuaries. Marine Pollution Bulletin 49 (5), 436–44. DOI:10.1016/j.marpolbul.2004.02.028.
  43. Tran, N.H., Taro, U., Ta, T.T. (2014). A Preliminary Study on the Occurrence of Pharmaceutically Active Compounds in Hospital Wastewater and Surface Water in Hanoi, Vietnam. CLEAN – Soil, Air, Water 42 (3), 267–75. DOI:10.1002/clen.201300021.
  44. Wojcieszyńska, D., Guzik, H., Guzik, U. (2022). Non-steroidal anti-inflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment. Science of The Total Environment 834, 155317. DOI:10.1016/j.scitotenv.2022.155317.
  45. Xie, Z., Lu, G., Liu, J., Yan, Z., Ma, B., Zhang, Z., Chen, W. (2015). Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China. Chemosphere 138, 140–47. DOI:10.1016/j.chemosphere.2015.05.086.
Go to article

Authors and Affiliations

Przemysław Piotr Tomczyk
1
Magdalena Urbaniak
1

  1. UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection,University of Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Pszczyna commune in southern Poland has long faced poor air quality, especially during the heating season. This study assesses the effectiveness of a local policy to reduce PM10 and PM2.5 concentrations by replacing old solid-fuel boilers with low- or zero-emission systems. Using data on air quality from monitoring stations for the two years 2020 and 2023 as well as meteorological records, and administrative reports on the scale and scope of boiler replacements, the analysis applies statistical comparisons, meteorological normalization, and regression analysis to isolate commune policy effects from weather variability. Results show a significant reduction in PM levels, particularly in winter, with PM10 decreasing by over 30% and PM2.5 by up to about 40%. These
findings confirm the effectiveness of targeted residential heating interventions and highlight how local actions, supported by regional and national funding, can yield measurable environmental and health benefits within a short period. Continued monitoring and public engagement are essential to sustaining air quality improvements.
Go to article

Bibliography

  1. Adamkiewicz, Ł., Maciejewska, K., Skotak, K., Krzyzanowski, M., Badyda, A., Juda-Rezler, K. & Dąbrowiecki, P. (2021 a). Health-Based Approach to Determine Alert and Information Thresholds for Particulate Matter Air Pollution. Sustainability, 13, 3, p. 1345. DOI: 10.3390/su13031345
  2. Adamkiewicz, Ł., Mucha, D. & Cygan, M. (2021 b), People or weather. What improves air quality? Analyses with the application of the model normalizing concentration of air pollutants with the application of meteorological data. Pilot study. European Clean Air Centre, Warsaw (https://cleanaircentre.eu/wp-content/uploads/2025/08/People-or-weather_what-improves-air-quality_ECAC.pdf (10.10.2025)).
  3. Adamkiewicz, Ł., Maciejewska K. & Mucha, D. (2024), Poland’s journey to clean air and AAQD compliance by 2030. Summary of the results. European Clean Air Centre, Warsaw (https://cleanaircentre.eu/wp-content/uploads/2025/08/ECAC_POLANDS_JOURNEY_TO_CLEAN_AIR_en-1.pdf (10.10.2025))
  4. Anti-Smog Resolution (2017). Silesian Voivodeship, 2017. Resolution No. V/36/1/2017 of the Silesian Voivodeship Assembly of 7 April 2017 on the introduction of restrictions on the operation of installations burning fuels in the Silesian Voivodeship, Official Journal of the Silesian Voivodeship of 2017, item 2624 (in Polish), (https://dzienniki.slask.eu/WDU_S/2017/2624/akt.pdf (15.04.2025)).
  5. BDOT (2011). Topographic Objects Database (BDOT10k), Open Data (in Polish), (https://dane.gov.pl/en/dataset/2030 (15.04.2025)).
  6. Błaszczak, B., Mathews, B., Słaby, K. & Klejnowski, K. (2023) Distribution of EC and OC temperature fractions in different research materials, Archives of Environmental Protection 49, 2, pp. 95-103. DOI: 10.24425/aep.2023.145901
  7. Brook, R.D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S.C. Jr. & Tager, I. (2004) Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals From the Expert Panel on Population and Prevention Science of the American Heart Association, Circulation 109, 21. DOI: 10.1161/01.CIR.0000128587.30041.C8
  8. CEEB (2023). Central Register of Building Emissions (CEEB), Chief Office of Building Control (GUNB). Data obtained from Air Quality Department of Pszczyna City Hall
  9. Cenowski, M. (2019) Air pollutions, in: Urban-industrial areas facing climate change based on the example of cities in the central part of the Górnośląsko-Zagłębiowska Metropolis, Gorgoń J. (Ed.) (in Polish). Work & Studies, Zabrze, pp. 54-68.
  10. Chen, X., Zhang, L.W., Huang, J.J., Song, F.J, Zhang, L.P., Qian, Z.M., Trevathan, E., Mao, H.J., Han, B., Vaughn, M., Chen, K.X., Liu, Y.M., Chen, J., Zhao, B.X., Jiang, G.H., Gu, Q., Bai, Z.P., Dong, G.H. & Tang, N.J. (2016) Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China, Science of The Total Environment 571, pp. 855-861. DOI: 10.1016/j.scitotenv.2016.07.064
  11. Clean Air (2018). New Clean Air program - thermal modernization and replacement of heat sources (in Polish), (https://czystepowietrze.gov.pl/ (15.04.2025)).
  12. Directive AAQD (2024). Directive EU 2024/2881 of the European Parliament and of the Council of 23 October 2024 on ambient air quality and cleaner air for Europe (recast), OJ L, 2024/2881, 20.11.2024, (https://eur-lex.europa.eu/eli/dir/2024/2881/oj (25.04.2025)).
  13. Directive CAFE (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, OJ L 152, 11.6.2008, p. 1–44, (https://eur-lex.europa.eu/eli/dir/2008/50/oj/eng (15.04.2025)).
  14. Directive Ecodesign (2009). Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products (recast), OJ L 285, 31.10.2009, p. 10–35, (https://eur-lex.europa.eu/eli/dir/2009/125/oj/eng (25.04.2025)).
  15. DTM (2025). Digital Terrain Model (DTM) – Open Data (in Polish), (https://dane.gov.pl/pl/dataset/2027,numeryczny-model-terenu-nmt (15.04.2025)).
  16. EEA (2020). European Environment Agency, 2020. Air quality in Europe - 2020 report, (file:///C:/Users/str.e/Downloads/Air%20quality%20in%20Europe%20-%202020%20report-2.pdf (15.04.2025)).
  17. EPA (2025). United States Environmental Protection Agency, 2025. Health and Environmental Effects of Particulate Matter (PM), (https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm (15.04.2025)).
  18. Fasola, S., Maio, S., Baldacci, S., La Grutta, S., Ferrante, G., Forastiere, F., Stafoggia, M., Gariazzo, C. & Viegi, G., (2020) Effects of particulate matter on the incidence of respiratory diseases in the pisan longitudinal study, International Journal of Environmental Research and Public Health 17, 7, p. 2540. DOI: 10.3390/ijerph17072540
  19. GIOŚ (2015). Chief Inspectorate for Environmental Protection (GIOŚ). Estimation of air quality - Up-to-date measurement data, (https:// https://powietrze.gios.gov.pl/pjp/current?lang=en&woj=/ (15.04.2025)).
  20. GIOŚ (2022). Chief Inspectorate for Environmental Protection (GIOŚ), 2022. Assessment of air pollution at regional background monitoring stations in Poland in 2021 in terms of PM10 and PM2.5 dust composition and heavy metals and PAHs deposition (in Polish), (https://powietrze.gios.gov.pl/depoz/en/publikacje/assessment-of-air-pollution-at-regional-background-monitoring-stations-in-poland-in-2021-in-terms-of-pm10-and-pm2-5-dust-composition-and-heavy-metals-and-pahs-deposition/ (25.04.2025)).
  21. Gorini, F. & Tonacci, A. (2025) Ambient Air Pollution and Congenital Heart Disease: Updated Evidence and Future Challenges. Antioxidants 14, 48, pp.33. DOI: 10.3390/antiox14010048
  22. GUGiK (2025). Head Office of Geodesy and Cartography (GUGiK), 2025. National Geoportal (in Polish), (https://www.geoportal.gov.pl/pl/aplikacje/geoportal-krajowy/ (15.04.2025)).
  23. Guo, J., Chai, G., Song, X., Hui, X., Li, Z., Feng, X. & Yang, K. (2023) Long-term exposure to particulate matter on cardiovascular and respiratory diseases in low- and middle-income countries: A systematic review and meta-analysis. Frontiers in Public Health 11:1134341. DOI 10.3389/fpubh.2023.1134341
  24. IQAir (2024). IQAir, 2024. 2024 IQAir World Air Quality Report, (https://www.iqair.com/newsroom/waqr-2024-pr?srsltid=AfmBOorkzgfhJig59I5p67gjsC15mGyr313EaIYpGsaWQmCqY8QeP-8A (25.04.2025)).
  25. Janeczek, J. & Jabłońska M. (2025) Evolution of Air Quality in the Upper Silesian Agglomeration, in: Silesia Superior: Narratives on Upper Silesia – The Multitude of Perspectives, Dampc-Jarosz, R., Kowalczyk, A. & Sadzikowska, L. (Eds.). V&R Unipress, pp. 249-268.
  26. Kanarek (2016). [Android and iOS]. Kanarek app (in Polish), (https://play.google.com/store/apps/details?id=pl.tajchert.canary&hl=pl (15.04.2025)).
  27. KAWKA (2013). Voivodeship Fund for Environmental Protection and Water Management in Katowice, 2013. Call for applications under the "KAWKA" Program (in Polish), (https://stara.wfosigw.katowice.pl/aktualnosci-archiwum/9-aktualnosci/803-nabor-wnioskow-w-ramach-programu-kawka.html (15.04.2025)).
  28. Kobza, J., Geremek, M. & Dul, L. (2018) Characteristics of air quality and sources affecting high levels of PM10 and PM2.5 in Poland, Upper Silesia urban area. Environmental Monitoring and Assessment 190, 515. DOI: 10.1007/s10661-018-6797-x
  29. Maciejewska, K. (2020). Short-term impact of PM2.5, PM10, and PMc on mortality and morbidity in the agglomeration of Warsaw, Poland. Air Quality, Atmosphere & Health 13, pp. 659-672. DOI: 10.1007/s11869-020-00831-9
  30. Mainka, A. & Żak, M. (2022) Synergistic or Antagonistic Health Effects of Long- and Short-Term Exposure to Ambient NO2 and PM2.5: A Review. International Journal of Environmental Research and Public Health 19, 14079. DOI: 10.3390/ijerph192114079
  31. ME Regulation (2018). Regulation of the Minister of Energy of 27 September 2018 on quality requirements for solid fuels, (Polish) Journal of Laws 2018, item 1890. (in Polish), (https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180001890 (15.04.2025)).
  32. Monn, C. (2001). Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen, dioxide and ozone. Atmospheric Environment 35, pp.1-32. DOI: 10.1016/S1352-2310(00)00330-7
  33. Nazar, W. & Niedoszytko, M. (2022). Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. International Journal of Environmental Research and Public Health 19, 2, p. 895. DOI: 10.3390/ijerph19020895
  34. NFOŚiGW (2010). National Found for Environmental Protection and Water Management (NFOŚiGW). Programs and Projects (in Polish), (https://www.gov.pl/web/nfosigw/ (25.04.2025)).
  35. Niedźwiedź, T., Łupikasza, E. B., Małarzewski, Ł. & Budzik, T. (2021) Surface-based nocturnal air temperature inversions in southern Poland and their influence on PM10 and PM2.5 concentrations in Upper Silesia. Theoretical and Applied Climatology 146, pp. 897–919. DOI: 10.1007/s00704-021-03752-4
  36. OSM (2025). OpenStreetMap Contributors, 2025. Open Database License., (https://www.openstreetmap.org/#map=11/49.9806/18.8278 (15.04.2025)).
  37. PMŚ (2008). Chief Inspectorate for Environmental Protection. State Environmental Monitoring (PMŚ) (in Polish), (https://www.gov.pl/web/gios/panstwowy-monitoring-srodowiska (15.04.2025)).
  38. PN-EN (2012). PN-EN 303-5: 2012, Heating boilers - Part 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW - Terminology, requirements, testing and marking. (in Polish).
  39. PONE (2017). Low-stock Emission, 2017. PONE Pszczyna - Applications(in Polish), (https://www.niskaemisja.pl/aktualnosci/97/ (25.04.2025)).
  40. POP (2020). Silesian Voivodeship, 2020. Resolution No. VI/21/12/2020 of the Silesian Voivodeship Assembly of 22 June 2020 on the adoption of the "Air Protection Program for the Silesian Voivodeship", Official Journal of the Silesian Voivodeship of 2020, item 5070 (in Polish), (https://dzienniki.slask.eu/WDU_S/2020/5070/akt.pdf (15.04.2025)).
  41. POP (2023). Silesian Voivodeship, 2023. Resolution No. VI/62/8/2023 of the Silesian Regional Assembly of 20 November 2023 on the adoption of the update of the "Air Protection Program for the Silesian Voivodeship" adopted by Resolution No. VI/21/12/2020 of the Silesian Regional Assembly of 22 June 2020, Official Journal of the Silesian Voivodeship of 2023, item 8625, (in Polish), (https://dzienniki.slask.eu/WDU_S/2023/8625/akt.pdf (15.04.2025)).
  42. PSA (2021). Polish Smog Alert, 2021. Air in Poland, (https://www.polishsmogalert.org/air-in-poland/ (15.04.2025)).
  43. Pszczyński Alarm Smogowy (2019). Pszczyna Smog Alert. Don't Feed the Smog (in Polish), (http://niedokarmiajsmoga.pl/ (15.04.2025)).
  44. Schneider, J. & Krzyzanowski, M. (2004). Health aspects of air pollution summary of main findings of the WHO project "Systematic review of health aspects of air pollution in Europe". Newsletter No. 33, June 2004, WHO Collaborating Centre for Air Quality Management and Air Pollution Control, Berlin. (https://www.researchgate.net/publication/237457854_Health_aspects_of_air_pollution_summary_of_main_findings_of_the_WHO_project_systematic_review_of_health_aspects_of_air_pollution_in_Europe (05.10.2025))
  45. Smołka-Danielowska, D., Jabłońska, M. & Godziek, S. (2021). The influence of hard coal combustion in individual household furnaces on the atmosphere quality in Pszczyna (Poland). Minerals 11, 11, p. 1155. DOI: 10.3390/min11111155
  46. Syngeos (2025). Syngeos. Global Innovative Solution, 2025. Monitoring and measuring air quality - smog sensor (in Polish), (https://syngeos.pl/ (15.04.2025)).
  47. WHO (2016). World Health Organization, 2016. Air quality database 2016, (https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2016 (15.04.2025)).
  48. WHO (2018). World Health Organization, 2018. World health statistics 2018: monitoring health for the SDGs. Sustainable development goals. (https://www.who.int/publications/i/item/9789241565585 300 (15.04.2025)).
  49. WHO (2021). World Health Organization, 2021. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, (https:// https://www.who.int/publications/i/item/9789240034228 (15.04.2025)).
  50. WHO (2022). World Health Organization, 2022. Air quality database 2022, (https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2022 (15.04.2025)).
  51. WMO (2023). World Meteorological Organisation e-Library, 2023. WMO Air Quality and Climate Bulletin, No. 3 – September 2023, (https:// https://library.wmo.int/records/item/62090-no-3-september-2023?offset=35/ (15.04.2025)).
  52. Wolf, K., Hoffmann, B., Andersen, Z.J., Atkinson, R.W., Bauwelinck, M., Bellander, T., Brandt, J., Brunekreef, B., Cesaroni, G., Chen, J., de Faire, U., de Hoogh, K., Fecht, D., Forastiere, F., Gulliver, J., Hertel, O., Hvidtfeldt, U.A., Janssen, N.A.H., Jørgensen, J.T., Katsouyanni, K., Ketzel, M., Klompmaker, J.O., Lager, A., Liu, S., MacDonald, C.J., Magnusson, P.K.E., Mehta, A.J., Nagel, G., Oftedal, B., Pedersen, N.L., Pershagen, G., Raaschou-Nielsen, O., Renzi, M., Rizzuto, D., Rodopoulou, S., Samoli, E., van der Schouw, Y.T., Schramm, S., Schwarze, P., Sigsgaard, T., Sørensen, M., Stafoggia, M., Strak, M., Tjønneland, A., Verschuren, W.M.M., Vienneau, D., Weinmayr, G., Hoek, G., Peters & A., Ljungman, P.L.S. (2021). Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: a pooled analysis of six European cohorts within the ELAPSE project. The Lancet Planetary Health 5, 9, pp. e620–e632. DOI: 10.1016/S2542-5196(21)00195-9
  53. WŚl (2024). Public Information Bulletin of the Silesian Voivodeship, 2024. Report on the State of the Voivodeship for 2023 (in Polish), (https://bip.slaskie.pl/wojewodztwo/raporty-o-stanie-wojewodztwa/raport-o-stanie-wojewodztwa-za-2023-rok.html (25.04.2025)).
  54. Xing, Y.F., Xu, Y.H., Shi, M.H. & Lian, Y.X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease 8,1,pp. E69-74. DOI: 10.3978/j.issn.2072-1439.2016.01.19
  55. Adamkiewicz, Ł., Maciejewska, K., Skotak, K., Krzyzanowski, M., Badyda, A., Juda-Rezler, K. & Dąbrowiecki, P. (2021 a). Health-Based Approach to Determine Alert and Information Thresholds for Particulate Matter Air Pollution. Sustainability, 13, 3, p. 1345. DOI: 10.3390/su13031345
  56. Adamkiewicz, Ł., Mucha, D. & Cygan, M. (2021 b), People or weather. What improves air quality? Analyses with the application of the model normalizing concentration of air pollutants with the application of meteorological data. Pilot study. European Clean Air Centre, Warsaw (https://cleanaircentre.eu/wp-content/uploads/2025/08/People-or-weather_what-improves-air-quality_ECAC.pdf (10.10.2025)).
  57. Adamkiewicz, Ł., Maciejewska K. & Mucha, D. (2024), Poland’s journey to clean air and AAQD compliance by 2030. Summary of the results. European Clean Air Centre, Warsaw (https://cleanaircentre.eu/wp-content/uploads/2025/08/ECAC_POLANDS_JOURNEY_TO_CLEAN_AIR_en-1.pdf (10.10.2025))
  58. Anti-Smog Resolution (2017). Silesian Voivodeship, 2017. Resolution No. V/36/1/2017 of the Silesian Voivodeship Assembly of 7 April 2017 on the introduction of restrictions on the operation of installations burning fuels in the Silesian Voivodeship, Official Journal of the Silesian Voivodeship of 2017, item 2624 (in Polish), (https://dzienniki.slask.eu/WDU_S/2017/2624/akt.pdf (15.04.2025)).
  59. BDOT (2011). Topographic Objects Database (BDOT10k), Open Data (in Polish), (https://dane.gov.pl/en/dataset/2030 (15.04.2025)).
  60. Błaszczak, B., Mathews, B., Słaby, K. & Klejnowski, K. (2023) Distribution of EC and OC temperature fractions in different research materials, Archives of Environmental Protection 49, 2, pp. 95-103. DOI: 10.24425/aep.2023.145901
  61. Brook, R.D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S.C. Jr. & Tager, I. (2004) Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals From the Expert Panel on Population and Prevention Science of the American Heart Association, Circulation 109, 21. DOI: 10.1161/01.CIR.0000128587.30041.C8
  62. CEEB (2023). Central Register of Building Emissions (CEEB), Chief Office of Building Control (GUNB). Data obtained from Air Quality Department of Pszczyna City Hall
  63. Cenowski, M. (2019) Air pollutions, in: Urban-industrial areas facing climate change based on the example of cities in the central part of the Górnośląsko-Zagłębiowska Metropolis, Gorgoń J. (Ed.) (in Polish). Work & Studies, Zabrze, pp. 54-68.
  64. Chen, X., Zhang, L.W., Huang, J.J., Song, F.J, Zhang, L.P., Qian, Z.M., Trevathan, E., Mao, H.J., Han, B., Vaughn, M., Chen, K.X., Liu, Y.M., Chen, J., Zhao, B.X., Jiang, G.H., Gu, Q., Bai, Z.P., Dong, G.H. & Tang, N.J. (2016) Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China, Science of The Total Environment 571, pp. 855-861. DOI: 10.1016/j.scitotenv.2016.07.064
  65. Clean Air (2018). New Clean Air program - thermal modernization and replacement of heat sources (in Polish), (https://czystepowietrze.gov.pl/ (15.04.2025)).
  66. Directive AAQD (2024). Directive EU 2024/2881 of the European Parliament and of the Council of 23 October 2024 on ambient air quality and cleaner air for Europe (recast), OJ L, 2024/2881, 20.11.2024, (https://eur-lex.europa.eu/eli/dir/2024/2881/oj (25.04.2025)).
  67. Directive CAFE (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, OJ L 152, 11.6.2008, p. 1–44, (https://eur-lex.europa.eu/eli/dir/2008/50/oj/eng (15.04.2025)).
  68. Directive Ecodesign (2009). Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products (recast), OJ L 285, 31.10.2009, p. 10–35, (https://eur-lex.europa.eu/eli/dir/2009/125/oj/eng (25.04.2025)).
  69. DTM (2025). Digital Terrain Model (DTM) – Open Data (in Polish), (https://dane.gov.pl/pl/dataset/2027,numeryczny-model-terenu-nmt (15.04.2025)).
  70. EEA (2020). European Environment Agency, 2020. Air quality in Europe - 2020 report, (file:///C:/Users/str.e/Downloads/Air%20quality%20in%20Europe%20-%202020%20report-2.pdf (15.04.2025)).
  71. EPA (2025). United States Environmental Protection Agency, 2025. Health and Environmental Effects of Particulate Matter (PM), (https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm (15.04.2025)).
  72. Fasola, S., Maio, S., Baldacci, S., La Grutta, S., Ferrante, G., Forastiere, F., Stafoggia, M., Gariazzo, C. & Viegi, G., (2020) Effects of particulate matter on the incidence of respiratory diseases in the pisan longitudinal study, International Journal of Environmental Research and Public Health 17, 7, p. 2540. DOI: 10.3390/ijerph17072540
  73. GIOŚ (2015). Chief Inspectorate for Environmental Protection (GIOŚ). Estimation of air quality - Up-to-date measurement data, (https:// https://powietrze.gios.gov.pl/pjp/current?lang=en&woj=/ (15.04.2025)).
  74. GIOŚ (2022). Chief Inspectorate for Environmental Protection (GIOŚ), 2022. Assessment of air pollution at regional background monitoring stations in Poland in 2021 in terms of PM10 and PM2.5 dust composition and heavy metals and PAHs deposition (in Polish), (https://powietrze.gios.gov.pl/depoz/en/publikacje/assessment-of-air-pollution-at-regional-background-monitoring-stations-in-poland-in-2021-in-terms-of-pm10-and-pm2-5-dust-composition-and-heavy-metals-and-pahs-deposition/ (25.04.2025)).
  75. Gorini, F. & Tonacci, A. (2025) Ambient Air Pollution and Congenital Heart Disease: Updated Evidence and Future Challenges. Antioxidants 14, 48, pp.33. DOI: 10.3390/antiox14010048
  76. GUGiK (2025). Head Office of Geodesy and Cartography (GUGiK), 2025. National Geoportal (in Polish), (https://www.geoportal.gov.pl/pl/aplikacje/geoportal-krajowy/ (15.04.2025)).
  77. Guo, J., Chai, G., Song, X., Hui, X., Li, Z., Feng, X. & Yang, K. (2023) Long-term exposure to particulate matter on cardiovascular and respiratory diseases in low- and middle-income countries: A systematic review and meta-analysis. Frontiers in Public Health 11:1134341. DOI 10.3389/fpubh.2023.1134341
  78. IQAir (2024). IQAir, 2024. 2024 IQAir World Air Quality Report, (https://www.iqair.com/newsroom/waqr-2024-pr?srsltid=AfmBOorkzgfhJig59I5p67gjsC15mGyr313EaIYpGsaWQmCqY8QeP-8A (25.04.2025)).
  79. Janeczek, J. & Jabłońska M. (2025) Evolution of Air Quality in the Upper Silesian Agglomeration, in: Silesia Superior: Narratives on Upper Silesia – The Multitude of Perspectives, Dampc-Jarosz, R., Kowalczyk, A. & Sadzikowska, L. (Eds.). V&R Unipress, pp. 249-268.
  80. Kanarek (2016). [Android and iOS]. Kanarek app (in Polish), (https://play.google.com/store/apps/details?id=pl.tajchert.canary&hl=pl (15.04.2025)).
  81. KAWKA (2013). Voivodeship Fund for Environmental Protection and Water Management in Katowice, 2013. Call for applications under the "KAWKA" Program (in Polish), (https://stara.wfosigw.katowice.pl/aktualnosci-archiwum/9-aktualnosci/803-nabor-wnioskow-w-ramach-programu-kawka.html (15.04.2025)).
  82. Kobza, J., Geremek, M. & Dul, L. (2018) Characteristics of air quality and sources affecting high levels of PM10 and PM2.5 in Poland, Upper Silesia urban area. Environmental Monitoring and Assessment 190, 515. DOI: 10.1007/s10661-018-6797-x
  83. Maciejewska, K. (2020). Short-term impact of PM2.5, PM10, and PMc on mortality and morbidity in the agglomeration of Warsaw, Poland. Air Quality, Atmosphere & Health 13, pp. 659-672. DOI: 10.1007/s11869-020-00831-9
  84. Mainka, A. & Żak, M. (2022) Synergistic or Antagonistic Health Effects of Long- and Short-Term Exposure to Ambient NO2 and PM2.5: A Review. International Journal of Environmental Research and Public Health 19, 14079. DOI: 10.3390/ijerph192114079
  85. ME Regulation (2018). Regulation of the Minister of Energy of 27 September 2018 on quality requirements for solid fuels, (Polish) Journal of Laws 2018, item 1890. (in Polish), (https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180001890 (15.04.2025)).
  86. Monn, C. (2001). Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen, dioxide and ozone. Atmospheric Environment 35, pp.1-32. DOI: 10.1016/S1352-2310(00)00330-7
  87. Nazar, W. & Niedoszytko, M. (2022). Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. International Journal of Environmental Research and Public Health 19, 2, p. 895. DOI: 10.3390/ijerph19020895
  88. NFOŚiGW (2010). National Found for Environmental Protection and Water Management (NFOŚiGW). Programs and Projects (in Polish), (https://www.gov.pl/web/nfosigw/ (25.04.2025)).
  89. Niedźwiedź, T., Łupikasza, E. B., Małarzewski, Ł. & Budzik, T. (2021) Surface-based nocturnal air temperature inversions in southern Poland and their influence on PM10 and PM2.5 concentrations in Upper Silesia. Theoretical and Applied Climatology 146, pp. 897–919. DOI: 10.1007/s00704-021-03752-4
  90. OSM (2025). OpenStreetMap Contributors, 2025. Open Database License., (https://www.openstreetmap.org/#map=11/49.9806/18.8278 (15.04.2025)).
  91. PMŚ (2008). Chief Inspectorate for Environmental Protection. State Environmental Monitoring (PMŚ) (in Polish), (https://www.gov.pl/web/gios/panstwowy-monitoring-srodowiska (15.04.2025)).
  92. PN-EN (2012). PN-EN 303-5: 2012, Heating boilers - Part 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW - Terminology, requirements, testing and marking. (in Polish).
  93. PONE (2017). Low-stock Emission, 2017. PONE Pszczyna - Applications(in Polish), (https://www.niskaemisja.pl/aktualnosci/97/ (25.04.2025)).
  94. POP (2020). Silesian Voivodeship, 2020. Resolution No. VI/21/12/2020 of the Silesian Voivodeship Assembly of 22 June 2020 on the adoption of the "Air Protection Program for the Silesian Voivodeship", Official Journal of the Silesian Voivodeship of 2020, item 5070 (in Polish), (https://dzienniki.slask.eu/WDU_S/2020/5070/akt.pdf (15.04.2025)).
  95. POP (2023). Silesian Voivodeship, 2023. Resolution No. VI/62/8/2023 of the Silesian Regional Assembly of 20 November 2023 on the adoption of the update of the "Air Protection Program for the Silesian Voivodeship" adopted by Resolution No. VI/21/12/2020 of the Silesian Regional Assembly of 22 June 2020, Official Journal of the Silesian Voivodeship of 2023, item 8625, (in Polish), (https://dzienniki.slask.eu/WDU_S/2023/8625/akt.pdf (15.04.2025)).
  96. PSA (2021). Polish Smog Alert, 2021. Air in Poland, (https://www.polishsmogalert.org/air-in-poland/ (15.04.2025)).
  97. Pszczyński Alarm Smogowy (2019). Pszczyna Smog Alert. Don't Feed the Smog (in Polish), (http://niedokarmiajsmoga.pl/ (15.04.2025)).
  98. Schneider, J. & Krzyzanowski, M. (2004). Health aspects of air pollution summary of main findings of the WHO project "Systematic review of health aspects of air pollution in Europe". Newsletter No. 33, June 2004, WHO Collaborating Centre for Air Quality Management and Air Pollution Control, Berlin. (https://www.researchgate.net/publication/237457854_Health_aspects_of_air_pollution_summary_of_main_findings_of_the_WHO_project_systematic_review_of_health_aspects_of_air_pollution_in_Europe (05.10.2025))
  99. Smołka-Danielowska, D., Jabłońska, M. & Godziek, S. (2021). The influence of hard coal combustion in individual household furnaces on the atmosphere quality in Pszczyna (Poland). Minerals 11, 11, p. 1155. DOI: 10.3390/min11111155
  100. Syngeos (2025). Syngeos. Global Innovative Solution, 2025. Monitoring and measuring air quality - smog sensor (in Polish), (https://syngeos.pl/ (15.04.2025)).
  101. WHO (2016). World Health Organization, 2016. Air quality database 2016, (https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2016 (15.04.2025)).
  102. WHO (2018). World Health Organization, 2018. World health statistics 2018: monitoring health for the SDGs. Sustainable development goals. (https://www.who.int/publications/i/item/9789241565585 300 (15.04.2025)).
  103. WHO (2021). World Health Organization, 2021. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, (https:// https://www.who.int/publications/i/item/9789240034228 (15.04.2025)).
  104. WHO (2022). World Health Organization, 2022. Air quality database 2022, (https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2022 (15.04.2025)).
  105. WMO (2023). World Meteorological Organisation e-Library, 2023. WMO Air Quality and Climate Bulletin, No. 3 – September 2023, (https:// https://library.wmo.int/records/item/62090-no-3-september-2023?offset=35/ (15.04.2025)).
  106. Wolf, K., Hoffmann, B., Andersen, Z.J., Atkinson, R.W., Bauwelinck, M., Bellander, T., Brandt, J., Brunekreef, B., Cesaroni, G., Chen, J., de Faire, U., de Hoogh, K., Fecht, D., Forastiere, F., Gulliver, J., Hertel, O., Hvidtfeldt, U.A., Janssen, N.A.H., Jørgensen, J.T., Katsouyanni, K., Ketzel, M., Klompmaker, J.O., Lager, A., Liu, S., MacDonald, C.J., Magnusson, P.K.E., Mehta, A.J., Nagel, G., Oftedal, B., Pedersen, N.L., Pershagen, G., Raaschou-Nielsen, O., Renzi, M., Rizzuto, D., Rodopoulou, S., Samoli, E., van der Schouw, Y.T., Schramm, S., Schwarze, P., Sigsgaard, T., Sørensen, M., Stafoggia, M., Strak, M., Tjønneland, A., Verschuren, W.M.M., Vienneau, D., Weinmayr, G., Hoek, G., Peters & A., Ljungman, P.L.S. (2021). Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: a pooled analysis of six European cohorts within the ELAPSE project. The Lancet Planetary Health 5, 9, pp. e620–e632. DOI: 10.1016/S2542-5196(21)00195-9
  107. WŚl (2024). Public Information Bulletin of the Silesian Voivodeship, 2024. Report on the State of the Voivodeship for 2023 (in Polish), (https://bip.slaskie.pl/wojewodztwo/raporty-o-stanie-wojewodztwa/raport-o-stanie-wojewodztwa-za-2023-rok.html (25.04.2025)).
  108. Xing, Y.F., Xu, Y.H., Shi, M.H. & Lian, Y.X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease 8,1,pp. E69-74. DOI: 10.3978/j.issn.2072-1439.2016.01.19
Go to article

Authors and Affiliations

Anna Piekarska-Stachowiak
1 2
ORCID: ORCID
Ewa Strzelecka-Jastrząb
3
ORCID: ORCID
Magdalena Polok
4
Joanna Woźnica
5
Marcin Lipowczan
1 2
ORCID: ORCID
Aleksander Dzida
6
Andrzej Woźnica
1 2
ORCID: ORCID

  1. Silesian Water Centre, University of Silesia in Katowice, Poland
  2. Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Poland
  3. Institute for Ecology of Industrial Areas, Katowice, Poland
  4. Pszczyna City Hall, Pszczyna, Poland
  5. Pszczyna Smog Alert Association, Pszczyna, Poland
  6. Specialist Horticultural Farm Marek Dzida, Goczałkowice-Zdrój, Poland

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Reviewers

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more