Details
Title
Atrazine toxicity in marine algae Chlorella vulgaris and in E. coli lux and gfp biosensor testsJournal title
Archives of Environmental ProtectionYearbook
2023Volume
vol. 49Issue
No 3Authors
Affiliation
Matejczyk, Marzena : Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,Department of Chemistry, Biology and Biotechnology, Bialystok, Poland ; Kondzior, Paweł : Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,Department of Chemistry, Biology and Biotechnology, Bialystok, Poland ; Ofman, Piotr : Bialystok University of Technology, Department of Environmental Engineering Technology,Bialystok, Poland ; Juszczuk-Kubiak, Edyta : Institute of Agricultural and Food Biotechnology-State Research Institute, Laboratory of Biotechnologyand Molecular Engineering, Warsaw, Poland ; Świsłocka, Renata : Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,Department of Chemistry, Biology and Biotechnology, Bialystok, Poland ; Łaska, Grażyna : Department of Agri-Food Engineering and Environmental Management,Bialystok University of Technology, Bialystok, Poland ; Wiater, Józefa : Bialystok University of Technology, Department of Agricultural and Food Engineeringand Environmental Management, Bialystok, Poland ; Lewandowski, Włodzimierz : Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,Department of Chemistry, Biology and Biotechnology, Bialystok, PolandKeywords
ecotoxicology ; atrazine ; Chlorella vulgaris ; bioluminescent biosensors ; water contaminationDivisions of PAS
Nauki TechniczneCoverage
87-99Publisher
Polish Academy of SciencesBibliography
- Akhtar, N., Khan, M. F., Tabassum, S. & Zahran, E. (2021). Adverse effects of atrazine on blood parameters, biochemical profile, and genotoxicity of snow trout (Schizothorax plagiostomus). Saudi Journal of Biological Sciences, 28, pp. 1999–2003. DOI:10.1016/j.sjbs.2021.01.001
- Ali, S.A., Mittal, D. & Kaur G. (2021). In situ monitoring of xenobiotics using genetically engineered whole cell based microbial biosensors: recent advances and outlook. World Journal of Microbiology and Biotechnology, 7, pp. 37–81. DOI:10.21203/rs.3.rs-264683/v1
- Bae, J. W., Seo, H. B., Belkin, S. & Gu M. B. (2020). An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Analitical and Bioanalitical Chemistry, 412, pp. 3373–3381. DOI:10.1007/s00216-020-02469-z
- Barsanti, L. & Gualtieri, P. (2014). Algae. Anatomy, Biochemistry, and Biotechnology (2 ed). CRC Press. Taylor & Francis Group. DOI:10.1201/b16544
- Camuel, A., Guieysse, B., Alcántara, C., & Béchet, Q. (2017). Fast algal ecotoxicity assessment: influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU. Ecotoxicology and Environmental Safety, 140, pp. 141–147. DOI:10.1016/j.ecoenv.2017.02.013
- Chen, J., Liu, J., Wu, S., Liu, W., Xia, Y., Zhao, J., Yang, Y., Peng, Y. & Zhao, S. (2021). Atrazine promoted epithelial ovarian cancer cells proliferation and metastasis by inducing low dose reactive oxygen species (ROS). Iran Journal of Biotechnology, 19, pp. 2623 – 2635. DOI:10.30498/IJB.2021.2623
- Dębowski, M. (2018). The use of microalgae biomass in engineering and environmental protection technologies. Polish Journal of Natural Sciences, 27, pp. 151-164. DOI:10.3390/en14196025
- Fareed, A., Hussain, A., Nawaz, M., Imran, M., Ali, Z. & Haq, S. U. (2021). The impact of prolonged use and oxidative degradation of Atrazine by Fenton and photo-Fenton processes. Environmental Technology and Innovation, 24, pp. 18-32. 101840. DOPI:10.1016/j.eti.2021.101840
- Jiang, B., Li, G., Xing, Y., Zhang, D., Jia, J., Cui, Z., Luan, X. & Tang, H. (2017). A whole cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere, 184, pp. 384–392. DOI:10.1016/j.chemosphere.2017.05.159
- Kamaz, M., Jones, S. M., Qian, X., Watts, M. J., Zhang, W. & Wickramasinghe, S. R. (2020). Atrazine removal from municipal wastewater using a membrane bioreactor. International Journal of Environmental Research and Public Health, 17, pp. 2567-2578. DOI:10.3390/ijerph17072567
- Kopcewicz, J., Lewak, S., Jaworski, K., Tretyn, A., Gniazdowska, A., Szmidt-Jaworska, A., Kęsy, J., Gabryś, H., Szymańska, M., Hawrylak-Nowak, B., Strzałka, K., Ciereszko, I., Rychter, A. M. & Tyburski, J. (2020). Plant physiology Polish Scientific Publishers PWN, Warsaw, Poland. (in Polish).
- Lu, Q., Zhou, X., Liu, R., Shi, G., Zheng, N., Gao, G. & Wang, Y. (2023). Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris. Ecotoxicology and Environmental Safety, 249, pp. 1–13. DOI:10.1016/j.ecoenv.2022.114451
- Majewska, M., Harshkova, D., Pokora, W., Baścik-Remisiewicz, A., Tułodziecki, S. & Aksmann, A. (2021). Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference. Ecotoxicology and Environmental Safety, 208, 111630. DOI:10.1016/j.ecoenv.2020.111630
- Malcata, F. X. (2019). Marine macro- and microalgae: an overview. CRC Press Taylor & Francis Group. DOI:10.1201/9781315119441
- Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020a). The study of biological activity of transformation products of dicoflenac and its interaction with chlorogenic acid. Journal of Environmental Sciences, 91, pp. 128–141. DOI:10.1016/j.jes.2020.01.022
- Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020b). Evaluation of the biological impact of the mixtures of diclofenac with its biodegradation metabolites 4’-hydroxydiclofenac and 5-hydroxydiclofenac on Escherichia coli. DCF synergistic effect with caffeic acid. Archives of Environmental Protection, 46, pp. 32–53. DOI:10.24425/aep.2020.135760
- Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020c). Synergistic interaction of diclofenac and its metabolites with selected antibiotics and amygdalin in wastewaters. Environmental Research, 186, 109511. DOI:10.1016/j.envres.2020.109511
- Matejczyk, M., Ofman, P., Parcheta, M., Świsłocka, R. & Lewandowski, W. (2022). The study of biological activity of mandelic acid and its alkali metal salts in wastewaters. Environmental Research, 205, 112429. DOI:10.1016/j.envres.2021.112429
- Melamed, S., Lalush, C., Elad, T., Yagur-Krol, S., Belkin, S. & Pedahzur, R. (2012). A bacterial reporter panel for the detection and classification of antibiotic substances: Detection and classification of antibiotics. Microbiology and Biotechnology, 5, pp. 536–548. DOI:10.1111/j.1751-7915.2012.00333.x
- Mofeed, J. & Moshleh, Y. (2013). Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotoxicology and Environmental Safety, 95, pp. 234–240. DOI:10.1016/j.ecoenv.2013.05.023
- Moraskie, M., Roshid, H., O’Connor, G., Dikici, E., Zings, J. M., Deo, S. & Daunert, S. (2021). Microbial whole-cell biosensors: current applications, challenges, and future perspectives. Biosensors and Bioelectronics, 191, 113359. DOI:10.1016/j.bios.2021.113359
- Ozturk, M., Coskuner, K. A., Serdar, B., Atar, F. & Bilgili, E. (2022). Impact of white mistletoe (Viscum album ssp. abietis) infection severity on morphology, anatomy and photosynthetic pigment content of the needles of cilicican fir (Abies cilicica). Flora, 294, 152135. DOI:10.1016/j.flora.2022.152135
- Qian, H., Sheng, G., Liu, W., Lu, Y., Liu, Z. & Fu, Z. (2008). Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environmental Toxicology and Chemistry, 27, pp. 182–187. DOI:10.1897/07-163.1
- Rojas-Villacorta, W., Rojas-Flores, S., De La Cruz-Noriega, M., Espino, H. C., Diaz, F. & Cardenas, M. G. (2022). Microbial biosensors for wastewater monitoring: mini review. Processes, 10, pp. 2-13. DOI:10.3390/pr10102002
- Roustan, A., Aye, M., De Meo, M. & Giorgio, C. D. (2014). Genotoxicity of mixtures of glyphosate and atrazine and their environmental transformation products before and after photoactivation. Chemosphere, 108, pp. 93-100. DOI:10.1016/j.chemosphere.2014.02.079
- Santos, K. C. & Martinez, C. B. R. (2014). Genotoxic and biochemical effects of atrazine and Roundups, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicology and Environmental Safety, 100, pp. 7-14. DOI:10.1016/j.ecoenv.2013.11.014
- Shan, W., Hu, W., Wen, Y., Ding, X., Ma, X., Yan, W. & Xia, Y. (2021). Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model. Reproductive Toxicology, 103, pp. 149-158. DOI:10.1016/j.reprotox.2021.06.009
- Silveyra, G. R., Medesani, D. A. & Rodríguez, E. M. (2022). Effects of the herbicide atrazine on Crustacean Reproduction. Mini-Review. Frontiers in Physiology, 13, pp. 1-5. DOI:10.3389/fphys.2022.926492
- Sivathanu, B. & Palaniswamy, S. (2012). Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomedical Prevention and Nutrition, 2, pp. 276-282. DOI:10.1016/j.bionut.2012.04.006
- Song,Y., Jiang, B., Tian, S., Tang, H., Liu, Z., Li, C., Jia, J., Huang, W. E., Zhang, X. & Li, G. (2014). A whole cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environmental Pollution, 195, pp. 178–184. DOI:10.1016/j.envpol.2014.08.024
- Su, Y., Cheng, Z., Chou, Y., Lin, S., Gao, L., Wang, Z., Bao, R. & Peng, L. (2022). Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquatic Toxicology, 244, 106097. DOI:10.1016/j.aquatox.2022.106097
- Sun, C., Xu, Y., Hu, N., Ma, J., Sun, S., Cao, W., Klobučar, G., Hu, C. & Zhao, Y. (2020). To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere, 244, 125514. DOI:10.1016/j.chemosphere.2019.125514
- Węgrzyn, A. & Mazur, R. (2020). Regulatory mechanisms of photosynthesis light reactions in higher plants. Postępy Biochemii (Advances in biochemistry), 66, pp. 134-42. (in Polish). DOI:10.18388/pb.2020_325
- Woutersen, M., Belkin, S., Brouwer, B., Wezel, A. P. & Heringa, M. B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Analitical and Bioanalitical Chemistry, 400, pp. 915-929. DOI:10.1007/s00216-010-4372-6
- Xiong, J. Q., Kurade, M. B., Abou-Shanab, R. A. J., Ji, M. K., Choi, J., Kim, J. O. & Jeon, B. H. (2016). Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresources Technology, 205, pp. 183-90. DOI:10.1016/j.biortech.2016.01.038
- Yang, F., Gao, M., Lu, H., Wei, Y., Chi, H., Yang, T., Yuan, M., Fu, H., Zeng, W. & Liu, C. (2021). Effects of atrazine on chernozem microbial communities evaluated by traditional detection and modern sequencing technology. Microorganisms, 9, 1832. DOI:10.3390/microorganisms9091832
- Yang, H., Jiang, Y., Lu, K., Xiong, H., Zhang, Y. & Wei, W. (2021a). Herbicide atrazine exposure induce oxidative stress, immune dysfunction and WSSV proliferation in red swamp crayfish Procambarus clarkii. Chemosphere, 283, 131227. DOI:10.1016/j.chemosphere.2021.131227
- Zappi, D., Coronado, E., Soljan, V., Basile, G., Varani, G., Turems, M. & Giardi, M. (2021). A microbial sensor platform based on bacterial bioluminescence (luxAB) and green fluorescent protein (gfp) reporters for in situ monitoring of toxicity of wastewater nitrification process dynamics. Talanta, 221, pp. 1-8. DOI:10.1016/j.talanta.2020.121438
- Zhang, Y., Meng, D., Wang, Z., Guo, H. & Wang, Y. (2012). Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiology Letters, 334, pp. 95–101. DOI:10.1111/j.1574-6968.2012.02625.x
- Zhao, Y., Yunyang, L., Bao, H., Nan, J. & Xu, G. (2023). Rapid biodegradation of atrazine by a novel Paenarthrobacter ureafaciens ZY and its effects on soil native microbial community dynamic. Frontiers in Microbiology, 4, pp. 1-13. DOI:10.3389/fmicb.2022.1103168
- Zhu, Y., Elcin, E., Jiang, M., Li, B., Wang, H., Zhang, X. & Wang, Z. (2022). Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Frontiers in Chemistry, 10, 1018124. DOI:10.3389/fchem.2022.1018124
Date
2023.09.20Type
ArticleIdentifier
DOI: 10.24425/aep.2023.147331DOI
10.24425/aep.2023.147331Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science