Details

Title

Model Studies of Metallurgical Processes Based on the Example of Blowing Steel with Argon

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 4

Authors

Affiliation

Merder, T. : Silesian University of Technology, Poland ; Pieprzyca, J. : Silesian University of Technology, Poland ; Wende, R. : Cognor SA, Ferrostal Łabędy Gliwice, Anny Jagiellonki 47, 44-109 Gliwice, Poland ; Witek, J. : Łukasiewicz Research Network—Institute of Ceramics and Building Materials, Toszecka 99, 44-100 Gliwice, Poland ; Saternus, M. : Silesian University of Technology, Poland

Keywords

Ladle furnace ; Cleanliness of steel ; Porous plug - slot-type ; Water models ; Physical modelling

Divisions of PAS

Nauki Techniczne

Coverage

142-152

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. World steel association. (2024). Total production of crude steel. Retrieved October 10, 2024, from https://worldsteel.org/data/annual-production-steel-data/?ind=P1_crude_steel_total_pub/CHN/IND
  2. Javurek, M., Brummayer, M. & Winico, R. (2022). Turbulent flow measurements in continuous steel casting mold water model. Materials Today: Proceedings. 62(5), 2581-2586. DOI: 1016/j.matpr.2022.03.605.
  3. Irvine, T.F., Capobianchi, M. (2000).. New-Newtonian flow. In F.Kreith (Eds.), The CRC Handbook of Thermal Engineering (pp. 114-118). Springer Science & Business Media.
  4. Müller, L. (1983). Application of dimensional analysis in model research (Zastosowanie analizy wymiarowej w badaniach modeli). Warszawa: PWN. (in Polish).
  5. Kožešnik, J. (1983). Theories of similarity and modeling (Teorie podobnosti a modelowáni). Praha: Academia.
  6. Wroński, S. (1979). Examples of calculations in thermodynamics and kinetics of chemical engineering processes (Przykłady obliczeń z termodynamiki i kinetyki procesów inżynierii chemicznej). Warszawa: WNT. (in Polish).
  7. Chen, L., Diao, J., Wang, G., Qiao, Y. & Xie, B. (2019). Experimental study on slag splashing with modified vanadium slag. Ironmaking & Steelmaking. 46(2), 165-168. DOI: /10.1080/03019233.2017.1361666.
  8. Bielnicki, M. & Jowsa J. (2018). Physical modeling of mold slag entrainment in continuous steel casting mold with consideration the impact of mold powder layer. Steel Research International. 89(9), 1800110, 1-9. DOI: 10.1002/srin.201800110.
  9. Morales, R.D., Calderón-Hurtado, F.A., Chattopadhyay, K., Guarneros, S.J. (2020). Physical and mathematical modeling of flow structures of liquid steel in ladle stirring operations. Metallurgical and Materials Transactions B. 51(2), 628-648. DOI: 10.1007/s11663-019-01759-x.
  10. Yang, F., Jin, Y., Zhu, Ch., Dong, X., Lin, P., Cheng, Ch., Li, Y, Sun, Li., Pan, J. & Cai, Q. (2019) Physical simulation of molten steel homogenization and slag entrapment in argon blown ladle. Processes. 7(8), 479, 1-15. DOI: /10.3390/pr7080479.
  11. Su, C.J., Chou, J.M. & Liu, S.H. (2009). Effect of gas bottom blowing condition on mixing molten iron and slag inside ironmaking smelter. Materials Transactions. 50(6), 1502-1509. DOI: 10.2320/matertrans.MRA2008434.
  12. Pieprzyca, J. & Merder, T. (2022). Modified Froude criterion in modeling two-phase flows in a steel ladle. Metalurgija. 61(1), 145-148.
  13. Irons, G., Senguttuvan, A. & Krishnapisharody, K. (2015). Recent advances in the fluid dynamics of ladle metallurgy. ISIJ International. 55(1), 1-6. DOI: 10.2355/isijinternational. 55.1.
  14. Drobniak, S. (2005). Fluid mechanics - introduction (Mechanika płynów - wprowadzenie). Częstochowa: Tempus Office.
  15. Jeżowiecka-Kabsch K., Szewczyk H. (2001). Fluid mechanics (Mechanika płynów). Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej. (in Polish).
  16. Levenspiel, O. (1999). Chemical Reaction Engineering. New York: John Wiley & Sons, Inc.
  17. Li, L., Li, M., Shao, L., Li, Q. & Zou, Z. (2020). Physical and mathematical modeling of swirling gas jets impinging on a°liquid bath using a novel nozzles-twisted lance. Steel Research International. 91(7), 1900684, 207-250. DOI: 10.1002/srin.201900684.
  18. Zhang, B., Chen, K., Wang, R., Liu, Ch. & Jiang, M. (2019). Physical modelling of splashing triggered by the gas jet of an oxygen lance in a converter. Metals. 9(4), 409, 1-12. DOI: 10.3390/met9040409.
  19. Cao, L.,  Wang, Y., Liu, Q. & Feng, X. (2018). Physical and mathematical modeling of multiphase flows in a converter. ISIJ International. 58(4), 573-584. DOI: 10.2355/isijinternatio ISIJINT-2017-680.
  20. Zou, Q., Hu. J., Yang, S., Wang, H. & Deng, G. (2023). investigation of the splashing characteristics of lead slag in side-blown bath melting Process. Energies. 16(2), 1007, 1-18. DOI: 10.3390/en16021007.
  21. Sun, M., Zhang, H., Zhang, J. & Wang, B. (2022). Research on mixing behavior in a combined top–bottom–side blown iron bath gasifier. Processes. 10(5), 973, 973. DOI: /10.3390/pr10050973.
  22. Wang, R., Zhang, B., Hu, C., Liu, C. & Jiang, M. (2022). Physical modeling of slag foaming in combined top and bottom blowing converter. 74(1), 151-158. DOI: 10.1007/s11837-021-04984-5.
  23. Zhou, X., Ersson, M., Zhong, L. & Jönsson,G. (2015). Numerical and physical simulations of a combined top-bottom-side blown converter. Steel Research International. 86(11), 1320-1338. DOI:10.1002/srin.201400376.
  24. Longlong, H. & Min, C. (2023) Study on slag splashing behavior in a 120 t converter based on physical and mathematical simulation. Steel Research International. 94(12), 2300227, 1210-1231DOI: 10.1002/srin.202300227.
  25. Sinelnikov, V., Szucki, M., Merder, T., Pieprzyca, J. & Kalisz, D. (2021). Physical and numerical modeling of the slag splashing process. Materials. 14, 2289, 2-19. DOI: 10.3390/ma14092289.
  26. Liu, C.J., Zhu, Y.X. & Jiang, M.F. (2003). Physical modelling of slag splashing in converter. Ironmaking and Steelmaking. 30(1), 36-42. DOI: 10.1179/030192303225009489.
  27. Pieprzyca, J. & Merder, T. (2021) The process of dissolving solid lump carbonaceous fuel (SLCF) in the oxygen converter - physical modeling. 60(3-4), 201-204.
  28. Mandova, H., Leduc, S., Wang, C., Wetterlund, E., Patrizio, P., Gale, W. & Kraxne, F. (2018). Possibilities for CO2 emission reduction using biomass in European integrated steel plants. Biomass and Bioenergy. 115, 231-243. DOI: 10.1016/j.biombioe.2018.04.021.
  29. Conejo, A.N., & Feng, W. (2022). Ladle eye formation due to bottom gas injection: a reassessment of experimental data. Metallurgical and Materials Transactions B. 53(2), 999-1017. DOI: 10.1007/s11663-021-02355-8.
  30. Jardon-Perez, L.E., Amaro-Villeda, A., Cenejo, A.N. & Ramirez-Argaez, M.A. (2018). Optimizing gas stirred ladles by physical modeling and PIV measurements. Materials and Manufacturing Processes. 33(8), 882-890. DOI:°10.1080/10426914.2017.1401722.
  31. Li, L.M., Liu, Z., Li, B., Matsuura, H. & Tsukihashi, F. (2015). Water model and CFD-PBM coupled model of gas-liquid-slag three-phase flow in ladle metallurgy. ISIJ International. 55(7), 1337-1346. DOI: 10.2355/isijinternational.55.1337.
  32. Michalek K., Tkadleckova, M., Socha, L., Gryc, K., Saternus, M., Pieprzyca, J. & Merder, T. (2018). Physical modelling of degassing process by blowing of inert gas. Archives of Metallurgy and Materials. 63(2), 987-992. DOI:°10.24425/122432.
  33. Lv, N., Wu, L.S., Wang, H.C., Dong, Y.C. & Su, C. (2017). Size analysis of slag eye formed by gas blowing in ladle refining. Journal of Iron and Steel Research International. 24, 243-250. DOI: 10.1016/S1006-706X(17)30036-5.
  34. Mazumdar, D., Dhandapani, P. & Sarvanakumar, R. (2017). Modeling and optimization of gas stirred ladle systems. ISIJ International. 57(2), 286-295. DOI: 10.2355/isijinternational.ISIJINT-2015-701.
  35. Krishnapisharody, K. & Irons, G.A. (2006). Modeling of slag eye formation over a metal bath due to gas bubbling. Metallurgical and Materials Transactions B. 37B 763-772.
  36. Wang, G.C., Haichen Zhou, H., Tian, Q., Ai, X., & Zhang, L. (2017). The motion of single bubble and interactions between two bubbles in liquid steel. ISIJ International. 57(5), 805-813. https://doi.org/10.2355/isijinternational.ISIJINT-2016-670.
  37. Merder, T., Pieprzyca, J., Warzecha, M. & Warzecha, P. (2017). Application of high flow rate gas in the process of argon blowing trough steel. Archives of Metallurgy and Materials. 62(2), 905-910. 905-910. DOI: 10.1515/amm-2017-0133.
  38. Peranandhanthan, M. & Mazumdar, D. (2010). Modeling of slag eye area in argon stirred ladles. ISIJ International. 50(11), 1622-1631. DOI: 10.2355/isijinternational.50.1622.
  39. Pieprzyca, J., Merder, T. & Saternus, M. (2014). Physical modelling of the process of mixing liquid metal in a ladle blown by gas. Metalurgija. 53(3), 327-330.
  40. Silva, A.M.B., Peixoto, J.J.M. & Silva, C.A. (2023). Numerical and physical modeling of steel desulfurization on a modified RH degasser. Metallurgical and Materials Transactions B. 54(5), 2651-2669. DOI: 10.1007/s11663-023-02864-8.
  41. Zhang, S., Liu. J., He, Y., Zhou, C., Yuan, B., Zhang, M. & Barati. M. (2023). Study of dispersed micro-bubbles and improved inclusion removal in Huhrstahl–Heraeus (RH) refining with argon injection through down leg. Metallurgical and Materials Transactions B. 54(5), 2347-2359. DOI:°10.1007/s11663-023-02836-y.
  42. Wang, X., Wang, S., Hu, H., Xie, X., Wu, C., Chen, D. & Long, M. (2023). Flow behavior of liquid steel in fewer strands casting of six-strand bloom tundish. 13(4), 706, 1-15. DOI: 10.3390/met13040706.
  43. Tkadlečková, M., Michalek, K., Socha, L., Válek, L., Sviželová, J. (2016). Investigation of technology of continuously cast steel billets using numerical modelling. In:°METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, 25-27 May 2016 (pp. 60-65). Ostrava, Czech Republic: Tanger Ltd.
  44. He, Z., Cheng, Q., Lu, H., Zhong, Y., Cheng, C., Song, J. & Lei,°Z. (2023). Numerical simulation of flow and argon bubble distribution in a continuous casting slab mold under different argon injection modes. 13(12), 2010, 1-19. DOI:°10.3390/met13122010.
  45. Sheng, D.Y. & Jönsson, P.G. (2021). Effect of thermal buoyancy on fluid flow and residence-time distribution in a single-strand tundish. 14(8), 1906, 1-20. DOI:°10.3390/ma14081906.
  46. Sviželová, J., Tkadlečková, M., Michalek, K. (2018). Research of the steel ingot casting and solidification using numerical modelling. In METAL 2018: 27th International Conference on Metallurgy and Materials, 23-25 May 2018 (192-198). Ostrava, Czech Republic: Tanger Ltd.
  47. Merder, T., Kozłowski, S. & Pieprzyca, J. (2024). Modelling of hydrodynamic phenomena occurring in refining ladles for high-carbon Fe-Si alloys. Metalurgija. 63(2),177-180.
  48. Merder, T., Warzecha, P., Pieprzyca, J., Warzecha, M., Wende, R. & Hutny, A. (2023). Model investigation of argon injection into liquid steel at ladle furnace station with using of innovative module. Materials. 16(24), 7698, 1-18. DOI:°3390/ma16247698.
  49. Barchuk, Y., Shcherbak, M. (2018). PL Patent No. 229475. Warszawa, Patent Office of the Republic of Poland. (in Polish).

Date

30.12.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151322
×