Details

Title

Sequential use of coagulation and adsorption methods for COD removal from soft drink industry wastewater

Journal title

Archives of Environmental Protection

Yearbook

2024

Volume

50

Issue

3

Authors

Affiliation

Sever, Ece : Tekirdağ Namık Kemal University, Turkey ; Öztürk, Tuba : Tekirdağ Namık Kemal University, Turkey ; Güneş, Elçin : Tekirdağ Namık Kemal University, Turkey

Keywords

activated carbon adsorption; ; coagulation mechanism; ; Fe+2/Fe+3; ; sequential systems; ; soft drink industry;

Divisions of PAS

Nauki Techniczne

Coverage

122-128

Publisher

Polish Academy of Sciences

Bibliography

  1. Can, O.T. (2014). COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton processes, Desalination and Water Treatment, 52, pp. 65-73. DOI:10.1080/19443994.2013.781545
  2. Casillas, H.A.M., Cocke, D.L., Gomes, J.A.G., Morkovsky, P., Parga, J.R. & Peterson, E. (2007). Electrocoagulation mechanism for COD removal, Separation and Purification Technology, 56, pp. 204-211. DOI:10.1016/j.seppur.2007.01.031
  3. Chang, S.H., Wang, K.S., Liang, H.H., Chen, H.Y., Li, H.C., Peng, T.H., Su, Y.C. & Chang, C.Y. (2010). Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process, Journal of Hazardou Materials, 175, pp. 850-857. DOI:10.1016/j.hazmat.2009.10.088
  4. Das, P.P., Sharma, M. & Purkait, M.K. (2022). Recent progress on electrocoagulation process for wastewater treatment: A review. Separation and Purification Technology, 292, 121058. DOI:10.1016/j.seppur.2022.121058
  5. Dia, O., Drogui, P., Bueldo, G. & Dube, R. (2018). Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment, Waste Management, 75, pp. 391-399. DOI:10.1016/j.wasman.2018.02.016
  6. Ebeling, J.M., Sibrell, P.L., Ogden, S.R. & Summerfelt, S.T. (2003). Evaluation of chemical coagulation-flocculation aids for the removal suspended solids and phosphorus from intensive recirculating aquaculture effluents discharge, Aquaculture Engineering, 29, pp. 23-42. DOI:10.1016/S0144-8609(03)00029-3
  7. El-Naas, M.H., Al-Zuhair, S. & Alhaija, M.A. (2010). Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon, Journal of Hazardou Materials, 173, pp. 750-757. DOI:10.1016/j.hazmat.2009.09.002
  8. GilPavas, E. & Correa-Sanchez, S. (2020). Assessment of the optimized treatment of indigo-polluted industrial textile wastewater by a sequential electrocoagulation-activated carbon adsorption process, Journal of Water Process Engineering, 36, 101306. DOI:10.1016/j.jwpe.2020.101306
  9. Heidman, I. & Calmano, W. (2008). Removal of Cr (VI) from model wastewaters by electrocoagulation with Fe electrodes, Separation and Purification Technology, 61, pp. 15-21. DOI:10.1016/j.seppur.2007.09.011
  10. Hernandez, I.L., Diaz, C.B., Cerecero, M.V., Sanchez, P.T.A., Juarez, M.C. & Lugo, V.L. (2017). Soft drink wastewater treatment by electrocoagulatin-electrooxidation processes, Environmental Technology, 38, 4, pp. 433-442. DOI:10.1080/09593330.2016.1196740
  11. Hsine, E.A., Benhammou, A. & and Pons, M.N. (2005). Water resources management in soft drink industry-water use and wastewater generation, Environmental Technology, 26, pp. 1309-1316. DOI:10.1080/09593332608618605
  12. Hu, R., Liu, Y., Zhu, G., Chen, C., Hantoko, D. & Yan, M. (2022). COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption, Journal of Water Process Engineering, 45, 102462. DOI:10.1016/j.wpe.2021.102462
  13. Inan, H., Dimoglo, A., Şimşek, H. & Karpuzcu, M. (2004). Olive oil mill wastewater treatment by means of electro-coagulation, Separation and Purification Technology, 36, pp. 23-31.
  14. Ishak, A.R., Hamid, F.S., Mohamad, S. & Tay, K.S. (2018). Stabilized landfill leachate treatment by coagulation-floculation coupled with UV-based sulfate radical oxidation process, Waste Management, 76, pp. 575-581. DOI:10.1016/j.wasman.2018.02.047
  15. Kasmi, M., Chatti, A., Hamdi, M. & Trabelsi, I. (2016). Eco-friendly process for soft drink industries wastewater reuse as growth medium for Saccharomyces cerevisiae production, Clean Technologies Environmental Policy, 18, pp. 2265-2278. DOI:10.1007/s 10098-016-1144-9
  16. Kong, X., Zhou, Y., Xu, T., Hu, B., Lei, X., Chen, H. & Yu, G. (2020). A novel technique of COD removal from electroplating wastewater by Fenton-alternating current electrocoagulation, Environmental Science and Pollution Research, 27, pp. 15198-15210. DOI:10.1007/s11356-020-07804-6
  17. Kuśmierek, K., Dąbek, D. & Świątkowski, A. (2023). Removal of direct orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56. DOI:10.24425/aep.2023.144736.
  18. Modirshahla, N., Behnajady, M.A.& Kooshaiian, S. (2007). Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation, Dyes and Pigments, 74, pp. 249-257. DOI:10.1016/j.dyepig.2006.02.006
  19. Ofir, E., Oren, Y. & Adin, A. (2007). Modified equilibrium-solubility domains and a kinetic model of iron oxide and hydroxide colloids for electroflocculation, Desalination, 204, pp. 79-86, 820079. DOI:10.1016/j.desal.2006.03.535
  20. Öztürk, T. & Özcan, Ö.F. (2021). Effectiveness of electrocoagulation and chemical coagulation methods on paper industry wastewater and optimum operating parameters, Separation Science and Technology, 56, 12, pp. 2074-2086. DOI:10.1080/01496395.2020.1805465
  21. Remya, N., & Swain, A. (2019). Soft drink industry wastewater treatment in microwave photocatalytic system - Exploration of removal efficiency and degradation mechanism, Separation and Purification Technology, 210, pp. 600-607. DOI:10.1016/j.seppur.2018.08.051
  22. Salinas, R.E.V., Miranda, V.M., Hernandez, I.L., Mejia, G.V., Juarez, M.C. & Sanchez, P.T.A. (2019). Pre-treatment of soft drink wastewater with a calcium-modified zeolite to improve electrooxidation of organic matter, Journal of Environmental Science and Health, Part A, 54, 7, pp. 617-627. DOI:10.1080/10934529.2019.1579522
  23. Shak, K.P.Y. & Wu, T.Y. (2014). Coagulation-flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: Treatment efficiencies and floc characterization, Chemical Engineering Journal, 256, pp. 293-305. DOI:10.1016/j.cej.2014.06.093
  24. Sheldon, M.S. & Erdogan, I.G. (2016). Multi-stage EGSB/MBR treatment of soft drink industry wastewater, Chemical Engineering Journal, 285, pp. 368-377. DOI:10.1016/j.cej.2015.10.021
  25. Sincero, A.P. & Sincero, G.A. (2003). Physical-Chemical Treatment of Water and Wastewater, IWA Publishing-CRC Press, Washington 2003.
  26. Standard Methods, (1995). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, USA 1995.
  27. Tsioptsias, C., Petridis, D., Athanasakis, N., Lemonidis, I., Deligiannis, A. & Samaras, P. (2015). Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis, Journal of Environmental Management, 164, pp. 104-113. DOI:10.1016/j.envman.2015.09.007
  28. Water Pollution Control Regulation (2004). Republic Ministry of Environment, Urbanization and Climate Change, Water Pollution Control Regulation, Official Journal No:25687.
  29. Zablocka, J.B., Capodaglio, A.G. & Vogel, D. (2017). Analysis of wastewater treatment efficiency in a soft drinks industry, International Conference Energy, Environmental and Material Systems, EEMS, Polanica-Zdroj, Poland, Sep. 13-15. DOI:10.1051/e3sconf/20171902014
  30. Zongo, I., Leclerc, J.P., Maiga, H.A., Wethe, J. & Lapicque, F. (2009). Removal of hexavalent chromium from industrial wastewater by electrocoagulation: A comprehensive comparison of aluminium and iron electrodes, Separation and Purification Technology, 66, pp. 159-166. DOI:10.1016/j.seppur.2008.11.012

Date

10.09.2024

Type

Article

Identifier

DOI: 10.24425/aep.2024.151691

DOI

10.24425/aep.2024.151691

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×