Details
Title
Neural Network Prediction Model –Applied to U.S. Industrial Greenhouse Gas EmissionsJournal title
Archives of Environmental ProtectionYearbook
2025Volume
51Issue
1Authors
Affiliation
Tseng, Shih-Hsien : National Taiwan University of Science and Technology,Taiwan ; Wang, Chia-Hsuan : National Taiwan University of Science and Technology,Taiwan ; Duong, Thi Ha Trang : National Taiwan University of Science and Technology,TaiwanKeywords
deep learning ; greenhouse gas emission ; GRU ; RNN ; transformer ; time series prediction modelDivisions of PAS
Nauki TechniczneCoverage
103-115Publisher
Polish Academy of SciencesBibliography
- Alibrahim, H. & Ludwig, S. A. (2021, 28 June-1 July 2021). Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization. 2021 IEEE Congress on Evolutionary Computation (CEC),
- AlKheder, S. & Almusalam, A. (2022). Forecasting of carbon dioxide emissions from power plants in Kuwait using United States Environmental Protection Agency, Intergovernmental panel on climate change, and machine learning methods. Renewable Energy, 191, pp. 819-827.
- EIA. (2022). Texas State Energy Profile. U.S. Energy Information Administration Retrieved from https://www.eia.gov/state/print.php?sid=TX
- Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M. & Xie, C. (2021). Prediction of PM2. 5 hourly concentrations in Beijing based on machine learning algorithm and ground-based LiDAR. Archives of Environmental Protection, 47(3).
- Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), pp. 1735-1780.
- Hsu, A., Wang, X., Tan, J., Toh, W. & Goyal, N. (2022). Predicting European cities’ climate mitigation performance using machine learning. Nature Communications, 13(1), 7487. DOI:10.1038/s41467-022-35108-5
- Hyndman, R. J. & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
- Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
- Potvin, J.-Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of Operations Research, 63, pp. 337-370.
- Riekstin, A. C., Langevin, A., Dandres, T., Gagnon, G. & Cheriet, M. (2020). Time Series-Based GHG Emissions Prediction for Smart Homes. IEEE Transactions on Sustainable Computing, 5(1), pp. 134-146. DOI:10.1109/TSUSC.2018.2886164
- Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), pp. 533-536.
- Şahin, U. (2019). Forecasting of Turkey's greenhouse gas emissions using linear and nonlinear rolling metabolic grey model based on optimization. Journal of Cleaner Production, 239, 118079.
- Sen, P., Roy, M. & Pal, P. (2016). Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization. Energy, 116, pp. 1031-1038.
- Sonata, I. & Heryadi, Y. (2024, 17-18 July 2024). Comparison of LSTM and Transformer for Time Series Data Forecasting. 2024 7th International Conference on Informatics and Computational Sciences (ICICoS),
- Sun, W. & Liu, M. (2016). Prediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in China. Journal of Cleaner Production, 122, pp. 144-153.
- Szeląg, B., Bartkiewicz, L., Studziński, J. & Barbusinski, K. (2017). Evaluation of the impact of explanatory variables on the accuracy of prediction of daily inflow to the sewage treatment plant by selected models nonlinear. Archives of Environmental Protection, 43. DOI:10.1515/aep-2017-0030
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
- Yin, L., Sharifi, A., Liqiao, H. & Jinyu, C. (2022). Urban carbon accounting: An overview. Urban Climate, 44, 101195.DOI:10.1016/j.uclim.2022.101195
Date
13.02.2025Type
ArticleIdentifier
DOI: 10.24425/aep.2025.153754DOI
10.24425/aep.2025.153754Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science