Nauki Techniczne

Metrology and Measurement Systems

Zawartość

Metrology and Measurement Systems | 2022 | vol. 29 | No 2

Abstrakt

Light sources and luminaires made in the LED technology are nowadays widely used in industry and at home. The use of these devices affects the operation of the power grid and energy efficiency. To estimate this impact, it is important to know the electrical parameters of light sources and luminaires, especially with the possibility of dimming. The article presents the results of measurements of electrical parameters as well as luminous flux of dimmable LED luminaires as a function of dimming and RMS supply voltage. On the basis of the performed measurements, a model of LED luminaire was developed for prediction of electrical parameters at set dimming values and RMS values of the supply voltage. The developed model of LED luminaire has 2 inputs and 26 outputs. This model is made based on 26 single models of electrical parameters, whose input signals are supply and control voltages. The linear regression method was used to develop the models. An example of the application of the developed model for the prediction of electrical parameters simulating the operation of an LED luminaire in an environment most similar to real working conditions is also presented.
Przejdź do artykułu

Autorzy i Afiliacje

Roman Sikora
1
ORCID: ORCID
Przemysław Markiewicz
1
ORCID: ORCID
Paweł Rózga
1

  1. Institute of Electrical Power Engineering, Łódz University of Technology, 90-924 Lodz, Poland

Abstrakt

We describe construction and investigation results of optical trace gas sensor working in the 3.334–3.337 μm spectral range. Laser spectroscopy was performed with a multipass cell. A setup was elaborated for detection of ethane at the 3.3368035 μm absorption line. Analysis of the gas spectra and the experiment have shown that, beside C2H6, the sensor is suitable for simultaneous detection of methane, formaldehyde and water vapor. Due to nonlinearity of the laser power characteristic we decided to detect the fourth harmonic of signal. Additional laser wavelength modulation was applied for optical interference suppression. In result, the precision of ethane detection of approximately 80 ppt has been achieved for the averaging time of 20 seconds. Long-term stability as well as the measurement linearity have also been positively tested. The system is suitable for detecting potential biomarkers directly in human breath.
Przejdź do artykułu

Autorzy i Afiliacje

Mateusz Winkowski
1
Tadeusz Stacewicz
1

  1. University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Pasteura 5, 02-093 Warsaw, Poland

Abstrakt

Different temperature sensors show different measurement values when excited by the same dynamic temperature source. Therefore, a method is needed to determine the difference between dynamic temperature measurements. This paper proposes a novelty approach to treating dynamic temperature measurements over a period of time as a temperature time series, and derives the formula for the distance between the measurement values using uniformsampling within the time series analysis. The similarity is defined in terms of distance to measure the difference. The distance measures were studied on the analog measurement datasets. The results show that the discrete Fréchet distance has stronger robustness and higher sensitivity. The two methods have also been applied to an experimental dataset. The experimental results also confirm that the discrete Fréchet distance performs better.
Przejdź do artykułu

Autorzy i Afiliacje

Zhiwen Cui
1
Wenjun Li
1
Sisi Yu
1
Minjun Jin
1

  1. College of Metrological Technology and Engineering, China Jiliang University, Hangzhou 310018, China

Abstrakt

Capacitive leakage and adjacent interference are the main influence sources of the measuring error in the traditional series step-up method. To solve the two problems, a new algorithm was proposed in this study based on a three-ports network. Considering the two influences, it has been proved that response of this three-ports network still has characteristics of linear superposition with this new algorithm. In this threeport network, the auxiliary series voltage transformers use a two-stage structure that can further decrease measurement uncertainty. The measurement uncertainty of this proposed method at 500/√3 kV is 6.8 ppm for ratio error and 7 μrad for phase displacement ( k = 2). This new method has also been verified by comparing its results with measurement results of the PTB in Germany over the same 110/√3 kV standard voltage transformer. According to test results, the error between the two methods was less than 2.7 ppm for ratio error and 2.9 μrad for phase displacement.
Przejdź do artykułu

Autorzy i Afiliacje

Hao Liu
1 2
Lixue Chen
1
Xue Wang
2
Teng Yao
2
Xiong Gu
2

  1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road Hongshan District, Wuhan, China
  2. China Electric Power Research Institute, Wuhan, China

Abstrakt

In this work, the electromotive force (EMF) near a permanent magnet heating cylinder was determined using a practical test bench. The aim is to elaborate three-dimensional analytical calculation capable of predicting accurately the same electromagnetic quantities by calculating the induced EMF in the presence of an inductive sensor. The analytical approach is obtained from developing mathematical integrals using the Coulombian approach to permanent magnets. In this approach, rotations are considered by Euler’s transformations matrices permitting the calculation of all permanent magnets flux densities contributions at the same points in the surrounding free space. These points, part of a uniform rectangular grid of the active EMF sensor surface, are used to compute the EMF by Faraday’s law. The validation results between experimental and simulated ones confirm the robustness and the efficiency of the proposed analytical approach.
Przejdź do artykułu

Autorzy i Afiliacje

Riad Bouakacha
1
Mehdi Ouili
2
Hicham Allag
1
Rabia Mehasni
2
Mohammed Chebout
3
Houssem Rafik Al-hana Bouchekara
4

  1. L2EI laboratory, University of Jijel,18000, Algeria
  2. LEC laboratory, University of Constantine1, Algeria
  3. L2ADI Applied Automation and Industrial Diagnostics Laboratory, University of Djelfa, Algeria
  4. Electrical Engineering, University of Hafr Al Batin, Saudi Arabia

Abstrakt

Vibration analysis for conditional preventive maintenance is an essential tool for the industry. The vibration signals sensored, collected and analyzed can provide information about the state of an induction motor. Appropriate processing of these vibratory signals leads to define a normal or abnormal state of the whole rotating machinery, or in particular, one of its components. The main objective of this paper is to propose a method for automatic monitoring of bearing components condition of an induction motor. The proposed method is based on two approaches with one based on signal processing using the Hilbert spectral envelope and the other approach uses machine learning based on random forests. The Hilbert spectral envelope allows the extraction of frequency characteristics that are considered as new features entering the classifier. The frequencies chosen as features are determined from a proportional variation of their amplitudes with the variation of the load torque and the fault diameter. Furthermore, a random forest-based classifier can validate the effectiveness of extracted frequency characteristics as novel features to deal with bearing fault detection while automatically locating the faulty component with a classification rate of 99.94%. The results obtained with the proposed method have been validated experimentally using a test rig.
Przejdź do artykułu

Autorzy i Afiliacje

Bilal Djamal Eddine Cherif
1
Sara Seninete
2
Mabrouk Defdaf
1

  1. Department of Electrical Engineering, Faculty of Technology, University of M’sila, M’sila 28000, Algeria
  2. Department of Electrical Engineering, Faculty of Technology, University of Mostaganem, Mostaganem 27000, Algeria

Abstrakt

The article presents the method of identifying surface damage by measuring changes in resistance in graphitebased sensing skin. The research focused on analysis of conductivity anomalies caused by surface damage. Sensitivity maps obtained with Finite Element Method (FEM) in conjunction with the analytical damage model were used to build the coating evaluation algorithm. The experiment confirmed the ability of this method to identify a single elliptical-shape damage. Eight electrodes were enough to locate the damage that covered about 0.1‰ of the examined area. The proposed algorithm can prove useful in simple applications for surface condition monitoring. It can be implemented wherever it is possible to apply a thin layer of conductor to a non-conductive surface.
Przejdź do artykułu

Autorzy i Afiliacje

Marek Stepnowski
1
Daniel Janczak
2
Małgorzata Jakubowska
2
Paweł Pyrzanowski
1
ORCID: ORCID

  1. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, 00-665 Warsaw, Poland
  2. Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, Sw. Andrzeja Boboli 8, 02-525 Warsaw, Poland

Abstrakt

Optically stimulated luminescence (OSL) and thermoluminescence (TL) methods are commonly used in dosimetry of ionizing radiation and dating of archaeological and geological objects. A typical disadvantage of OSL detectors is signal loss over a longer time scale. In this article, we present a method of studying this phenomenon as well as monitoring the state of the detector by means of optical sampling. The method was used to determine the OSL signal loss (fading) characteristics of selected potassium feldspars.
Przejdź do artykułu

Autorzy i Afiliacje

Ewa Mandowska
1
Robert Smyka
2
Arkadiusz Mandowski
2

  1. Jan Dlugosz University, Faculty of Science and Technology, Department of Advanced Calculation Methods, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
  2. Jan Dlugosz University, Faculty of Science and Technology, Department of Experimental and Applied Physics, Armii Krajowej 13/15, 42-200, Czestochowa, Poland

Abstrakt

Adjustable-width pulse signals are widely used in systems such as test equipment for hold time, response time and radar testing. In this study, we proposed a pulse generation method based on virtual sampling with ultra-high pulse width resolution. In the proposed method, the sampling rate of a digital-to-analogue converter (DAC) was adjusted to considerably improve pulse width resolution. First, the sampling rate was matched with the target pulse width resolution to digitally sample the ideal signal and generate digital waveform sampling points. Next, the signal bandwidth of the DAC was matched using a low-pass digital filter. Finally, the waveform sampling points were downsampled using an integer factor and output after digital-to-analogue conversion. The waveform pulse width information generated by high-frequency digital sampling was passed step by step and retained in the final output analogue signal. A DAC with a sampling rate of 1.25 GSa/s was used, and the pulse width resolution of the pulse signal was 0.1 ns. Theoretically, a sampling rate of 10 GSa/s is required to achieve 0.1 ns resolution. This method is simple, has a low cost, and exhibits excellent performance.
Przejdź do artykułu

Autorzy i Afiliacje

Hanglin Liu
1
Zaiming Fu
1
Dexuan Kong
1
Houjun Wang
1
Yindong Xiao
1

  1. University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China

Abstrakt

In dentistry, 3D intraoral scanners (IOSs) are gaining increasing popularity in the production of dental prostheses. However, the quality of an IOS in terms of resolution remains the determining factor of choice for the practitioner; a high resolution is a quality parameter that can reduce error in the production chain. To the best of our knowledge, the evaluation of IOS resolution is not clearly established in the literature. This study provides a simple assessment of resolution of an IOS by measuring a reference sample and highlights various factors that may influence the resolution. A ceramic tip was prepared to create a very thin object with an edge smaller than the current resolution stated by the company. The sample was scanned with microCT (micro-computed tomography) and an IOS. The resulting meshes were compared. In the mesh obtained with the IOS, the distance between two planes on the edge was approximately 100 micrometers, and that obtained with microtomography was 25 micrometers. The curvature values were 27.46 (standard deviation – SD) 14.71) μm -1 and 5.18 (SD 1.16) μm -1 for microCT and IOS, respectively. These results show a clear loss of information for objects that are smaller than 100 μm. As there is no normalized procedure to evaluate resolution of IOSs, the method that we have developed can provide a positive parameter for control of IOSs performance by practitioners.
Przejdź do artykułu

Autorzy i Afiliacje

Alban Desoutter
1
Gérard Subsol
2
Eric Fargier
3
Alexandre Sorgius
3
Hervé Tassery
1
Michel Fages
1
Frédéric Cuisinier
1

  1. Univ. Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
  2. Laboratory of Computer Science, Robotics and Microelectronics of Montpellier, 161 Rue Ada, 34095 Montpellier, France
  3. Laboratoire National de Métrologie et d’Essais, 1 Rue Gaston Boissier, 75724 Paris Cedex 15, France

Abstrakt

The cognitive aspects like perception, problem-solving, thinking, task performance, etc., are immensely influenced by emotions making it necessary to study emotions. The best state of emotion is the positive unexcited state, also known as the HighValence LowArousal (HVLA) state of the emotion. The psychologists endeavour to bring the subjects from a negatively excited state of emotion (Low Valence High Arousal state) to a positive unexcited state of emotion (High Valence Low Arousal state). In the first part of this study, a four-class subject independent emotion classifier was developed with an SVM polynomial classifier using average Event Related Potential (ERP) and differential average ERP attributes. The visually evoked Electroencephalogram (EEG) signals were acquired from 24 subjects. The four-class classification accuracy was 83% using average ERP attributes and 77% using differential average ERP attributes. In the second part of the study, the meditative intervention was applied to 20 subjects who declared themselves negatively excited (in Low Valence High Arousal state of emotion). The EEG signals were acquired before and after the meditative intervention. The four-class subject independent emotion classifier developed in Study 1 correctly classified these 20 subjects to be in a negatively excited state of emotion. After the intervention, 16 subjects self-assessed themselves to be in a positive unexcited (HVLA) state of emotion (which shows the intervention accuracy of 80%). Testing a four-class subject independent emotion classifier on the EEG data acquired after the meditative intervention validated 13 of 16 subjects in a positive unexcited state, yielding an accuracy of 81.3%.
Przejdź do artykułu

Autorzy i Afiliacje

Moon Inder Singh
1
Mandeep Singh
1

  1. Thapar Institute of Engineering and Technology, P.O. Box 32, Patiala, Pin – 147004, India

Instrukcja dla autorów



Sample article with Author guidelines



Author guidelines



Types of contributions

Metrology and Measurement Systems welcomes submissions of the following article types:

• invited special issue or review papers presenting the current stage of the knowledge within scope of the journal (about 20 edited pages, approximately 3000 characters each),
• research papers reporting high-quality original scientific or technological advancements (max. 12 pages),
• papers based on extended and updated contributions presented at scientific conferences (max. 12 pages),
• short notes, i.e. book reviews, conference reports, short news (max. 2 pages).


Manuscript preparation

General The text of a manuscript should be written in clear and concise English. The camera-ready format – with attached separate files containing illustrations, tables and photographs – is required. A cover letter with clear explanation of scientific novelty of the paper is strongly recommended. Papers based on extended and updated contributions presented at scientific conferences, or strongly related to previous authors’ works, must be accompanied with a cover letter file, which should explain in details changes made in the manuscript in comparison with the original conference paper and highlight the novelty in reference to other authors’ works.
The main text of a manuscript should be printed on an A4 page (with margins of 2.5 cm) using Times New Roman style with a font size of 12 pt; the paragraphs should start with the indentation of 5 mm, and titles should be written in bold. That text can be divided into sections (numbered 1, 2, …), first-order subsections (numbered 1.1., 1.2., …, written in italics), and – if needed – second-order subsections (numbered 1.1.1., 1.1.2., …, written same as first-order subsections). The only acceptable manuscript formats are in Microsoft Word (.doc, .docx).

The Editor encourages the Authors of submitted papers who are not English native speakers, to use a language service checking the language correctness not only with respect to grammar, but also in the way of presentation of research results accepted by renowned publishers, e.g. presented on the website of the European Association of Science Editors. The Editor encourages the Authors of submitted papers who are not English native speakers, to use a language service checking the language correctness not only with respect to grammar, but also in the way of presentation of research results accepted by renowned publishers, e.g. presented on the website of the European Association of Science Editors.


Figures
Figures (illustrations, photographs) and tables, provided in the camera-ready form suitable for reproduction (which may include reduction), should be additionally submitted (one per page), larger than the final size. While preparing figures we encourage to start with defining expected size and minimum font size that fit to all graphics in the manuscript – using the same style in all of your graphics visually improves the article. Final figure formats must be in one of the following: (vectors) .eps, .pdf, .ai or .cdr, and (bitmaps) .bmp, .gif, .tif or .jpg.
As far as plots, block diagrams, schematics etc. are concerned, we suggest to use one of vector formats to improve quality and scalability. Figures in vector formats must be saved using RGB colours and with fully white background (0% K). Hidden layers are unacceptable. Minimum line thickness printed in a single colour is 0.25 pt (0.09 mm), and 1 pt (0.36 mm) when using more colours. Typically we suggest 0.2-0.5 mm but in particular cases the range 0.1–1.0 mm will be accepted. Lines in plots should be distinguished not only by using different colours but also using different line types and markers, if needed.


Equation
All equations must be numbered consecutively throughout the text. Each equation should be preceded and followed by a 6-point spacing. Punctuate equations when they are part of a sentence. Equation numbers should be enclosed in parentheses. Equations should be prepared with the use of MathType or Microsoft Equation editors. The type size in the equation is the same as for the text. To make your equations more compact, you may use the appropriate mathematical symbols or expressions. The symbols used in an equation have to be defined before that equation or immediately after it. Use italics for variables (e.g. i, x, n), physical quantity symbol (e.g. voltage U, temperature T), letter pointers and general function symbols. Do not use italics for constants, indexes, minimum, maximum and trigonometric functions, mathematical operators, differentials, etc. To refer to the equation use “(1)”, not “Eq. (1)” or “equation (1)”, except at the beginning of a sentence where “Equation (1)” should be used. We recommend to use International System of Units SI i.e. metre-kilogram-second system of units. As a decimal separator dot should be used in the entire manuscript (text, figures, tables).


References
The paper has to be clearly positioned in the context of relevant literature in the field of measurements and instrumentation. Note that lack of references from the main field of Metrology and Measurement Systems interest may suggest that the content of manuscript does not exactly correspond to the scope of metrological journals. It may reduce possibility that a proposed paper will be read by audience society. In such a case our Editorial Board may suggest to send the manuscript to a more appropriate journal. Also note that the use of possibly up-to-date references may indicate importance of your work. Table below gives examples of some relevant and renewable journals related to widely understood metrology.


Journal

Publisher

ISSN

Metrologia

IOP Publishing

0026-1394

IEEE Transactions on Instrumentation and Measurement

IEEE

0018-9456

Measurement

Elsevier

0263-2241

Measurement Science and Technology

IOP Publishing

0957-0233

Metrology and Measurement Systems

PAS

0860-8229

Review of Scientific Instruments

IOP Publishing

0034-6748

IEEE Transactions on Industrial Electronics

IEEE

1557-9948

IET Science, Measurement & Technology

IET

1751-8822

Journal of Instrumentation

SISSA, IOP Publishing

1748-0221

Measurement Science Review

Walter de Gruyter

1335-8871

IEEE Instrumentation and Measurement Magazine

IEEE

1094-6969

Bulletin of the Polish Academy of Sciences: Technical Sciences

PAS

2300-1917

Opto-Electronics Review

PAS

1896-3757

IEEE Sensors Journal

IEEE

1558-1748

Sensors

MDPI

1424-8220




References should be inserted in the text in square brackets, i.e. [1]; their list, numbered in citation order, should appear at the end of the manuscript. The format of the references should follow the APA 7th edition formatting style, i.e.: for an journal paper – surname(s) and initial(s) of author(s), year in brackets, title of the paper, full journal name, volume, issue (in brackets) and page numbers. Put all author names unless there are more than 20. Otherwise, after the first 19 authors’ names, use an ellipsis in place of the remaining author names. Then, end with the final author’s name (do not place an ampersand before it).


Submission process
Manuscript should be submitted via the Internet Editorial System (IES) – an online submission and peer review system. In order to submit the manuscript via the IES, the authors (first-time users) must create an author account to obtain a user ID and password required to enter the system. The submission of the manuscript in a single file, i.e. “Article File” containing the complete manuscript (with all figures of high quality and tables embedded in the text), is preferred. All figures have to be uploaded in separate files. The generated PDF file has to be approved. The PDF file has lower quality of the embedded figures to limit its size only.
The submission of a manuscript means that its content has not been published previously, it is not under consideration for publication elsewhere, and that – if accepted – it will not be published elsewhere. The Author hereby grants the Polish Academy of Sciences (the Journal Owner) the license for commercial use of the article according to the Open Access License ( CC BY-NC-ND 4.0), which has to be signed before publication. The copyright form is available in the IES.
The Authors are urged to suggest 4 to 5 reviewers in their application (with names, affiliations and addresses) with whom the Editorial Board could co-operate while processing the paper. Proposed reviewers should be experts deeply involved in issues related to the subject matter of the paper and they are intended to come from different universities or research centres.
Each submitted manuscript is subject to a single-blind peer-review procedure, and the publication decision is based on the reviewers’ comments. If necessary, the authors may be invited to revise their manuscripts. On acceptance, manuscripts are subject to editorial amendment to exactly fit the journal style.
An essential criterion for the evaluation of submitted manuscripts is their potential impact on the research field, measured by the number of repeated quotations. Such papers are preferred at the evaluation and publication stages.
Proofs will be sent to the corresponding author by e-mail and should be returned within 48 hours from receipt. The publication in the journal is free of charge. A sample copy of the journal will be sent to the corresponding author free of charge. For colour pages the authors will be charged at the rate of 160 PLN or 80 EUR per page. The payment to the bank account of the main distributor (given in “Subscription Information”) must be completed before the date indicated by the Editorial Office.


Other information
It is possible to include supplementary files related to the article content, such as e.g. developed databases. These files can be then used by other researchers to compare their algorithms using the same input data. For more details about supplementary files please contact the Editorial Board: metrology@wat.edu.pl. The biographical statements, at the very end of the article, are not obligatory, however, they are kindly recommended. Each statement should include the author’s full name and brief personal history focused on areas of research and scientific achievements. The biographical statement may not exceed 100 words and should be written using Times New Roman style with a font size of 8 pt.
The publication of your article is a great achievement but then it needs to be further promoted to make it more visible to the research community. Responsibility for this task lies with the Authors and our Editorial Board. We guarantee free access to the article in the Journals PAN of the Polish Academy of Science, including articles in Early Access form (published just after acceptance decision), indexing in popular and renewable databases (e.g. Thomson Scientific Master Journal List, Elsevier’s Scopus, Google Scholar). Furthermore, selected articles are highlighted on the journal website and are reprinted for promotion at conferences and other events. The Authors can share the final form of the article on various social networks and research-sharing platforms, such as Twitter, Facebook, Linkedin, ResearchGate, Academia.edu, SciProfiles. They are also encouraged to update personal and institutional webpages by adding the title and a link of the article. Feel free also to share your work with your colleagues using any other methods that do not conflict with the CC BY-NC-ND 4.0 license.
For more detailed description about how to write a paper for the Metrology and Measurement Systems journal please look at the Author guidelines for manuscript preparation. We strongly recommend using this file as a template for manuscript preparation.


Ta strona wykorzystuje pliki 'cookies'. Więcej informacji