Recent advances in THz detection with the use of CMOS technology have shown that this option has the potential to be a leading method of producing low-cost THz sensors with integrated readout systems. This review paper, based on authors’ years of experience, presents strengths and weaknesses of this solution. The article gives examples of some hints, regarding radiation coupling and readout systems. It shows that silicon CMOS technology is well adapted to the production of inexpensive imaging systems for sub-THz frequencies. As an example paper presents the demonstrator of a multipixel Si-CMOS THz spectroscopic system allowing for chemical identification of lactose. The THz detectors embedded in this system were manufactured using the CMOS process.
Range-gated-imaging system, which can be used to eliminate backscatter in strong scattering environments, is based on two high speed technologies. It uses high power, ultra-short pulse laser as the light source. And it opens the optical gate of an ICCD camera with a micro-channel-plate image intensifier in a very short time while the laser pulses reflected by the object is coming back to the ICCD camera. Using this range-gated-imaging technology, the effect of scattered light can be reduced and a clear image is obtained.
In this paper, the test results of the range-gated-imaging system under dense aerosol environments, which simulates environments in the reactor containment building when the severe accident of the nuclear power plant occurred, are described. To evaluate the observation performance of the range-gated-imaging system under such dense fog environment, we made a test facility. Fog particles are sprayed into the test facility until fog concentration is reached to the postulated concentration level of the severe accident of the nuclear power plant. At such dense fog concentration conditions, we compared and evaluated the observation performances of the range-gated-imaging system and the CCD camera.
The utmost limit performance of interband cascade detectors optimized for the longwave range of infrared radiation is investigated in this work. Currently, materials from the III–V group are characterized by short carrier lifetimes limited by Shockley-Read-Hall generation and recombination processes. The maximum carrier lifetime values reported at 77 K for the type-II superlattices InAs/GaSb and InAs/InAsSb in a longwave range correspond to ∼200 and ∼400 ns. We estimated theoretical detectivity of interband cascade detectors assuming above carrier lifetimes and a value of ∼1–50 μs reported for a well-known HgCdTe material. It has been shown that for room temperature the limit value of detctivity is of ∼3–4×1010 cmHz1/2/W for the optimized detector operating at the wavelength range ∼10 μm could be reached.
We propose a new integrated demultiplexer model using the two-dimensional photonic crystal (2D PC) through the hexagonal resonant cavity (HRC) for the International Telecommunication Union (ITU) standard. The integrated model of demultiplexer for both 25 GHz and 50 GHz has been designed for the first time. The demultiplexer consists of bus input waveguide, drop waveguide, Hexagonal Resonant Cavity (HRC), 6 Air Hole Filter (6-AHF), 7 Air Hole Filter (7-AHF). The 7-AHF is used to filter 25GHz wavelength, and the 6-AHF filter is used to filter 50 GHz wavelength. The Q-factor on the designed demultiplexer is flexible based on the idea of increasing the number of air holes between drop waveguide and resonant cavity. The demultiplexer is designed to drop maximum 8 resonant wavelengths. One side of demultiplexer is able to drop 50 GHz ITU standard wavelengths, which are of 1556.3 nm, 1556.7 nm, 1557.1 nm and 1557.5 nm, and further the other facet is able to drop 25 GHz wavelengths, which are of 1551.4 nm, 1551.6 nm, 1551.8 nm, and 1552.0 nm. The proposed demultiplexer may be carried out within the integrated dual system. This system is able to lessen the architecture cost and the size is miniaturized substantially.
This paper proposes a method for offline accurate ball tracking for short volleyball actions in sport halls. Our aim is to detect block touches on the ball and to determinate accurate trajectory and impact positions of the ball to support referees. The proposed method is divided into two stages, namely training and ball tracking, and is based on background subtraction. Application of the Gaussian mixture model has been used to estimate a background, and a high-speed camera with a capture rate of 180 frames per second and a resolution of 1920 × 1080 are used for motion capture. In sport halls significant differences in light intensity occur between each sequence frame. To minimize the influence of these light changes, an additional model is created and template matching is used for accurate determination of ball positions when the ball contour in the foreground image is distorted. We show that this algorithm is more accurate than other methods used in similar systems. Our light intensity change model eliminates almost all pixels added to images of moving objects owing to sudden changes in intensity. The average accuracy achieved in the validation process is of 0.57 pixel. Our algorithm accurately determined 99.8% of all ball positions from 2000 test frames, with 25.4 ms being the average time for a single frame analysis. The algorithm presented in this paper is the first stage of referee support using a system of many cameras and 3D trajectories.
Results of the studies of optical properties of anti-reflective glasses with various texturization patterns, which were used as a coating for crystalline silicon solar cells, are presented. It was found that glass samples sorted by their optical transmittance demonstrated the same order as when sorted by their solar-cell short-circuit current enhancement parameter. The value of the latter depended on the parameters of texturization, such as the surface density of inclusions and their profile, and the depth of etching pits. A 2% relative increase of the solar cell efficiency was obtained for the best glass sample for null degree angle of incidence, proving enhanced light trapping properties of the studied glass.
A simple and robust method to generate a dual-wavelength mode-locked laser using a tunable Mach-Zehnder filter (TMZF) and a single-wall carbon nanotube (SWCNT) based saturable absorber (SA) is proposed and demonstrated. The proposed laser uses a thulium-doped fiber for lasing in the two-micron region and exploits the interferometric spectrum of the TMZF to produce dual peaks with nearly equal magnitude. SWCNT based SA enables mode-locking at a threshold value of 150.4 mW with distinct dual-wavelength peaks at 1919.2 nm and 1963.7 nm. The peaks have a calculated pulse width of 1.8 ps and 1.6 ps, respectively with a repetition rate of 9.1 MHz with a relatively high optical-signal-to-noise ratio value of 59.1 dB. The output is also observed to remain unchanged over time, indicating high stability. The proposed laser has a promising application, particularly in ultrafast gas molecular spectroscopy and sensing.
In the present investigation optical, electro-optical and dielectric properties have been measured for nematic liquid crystal (NLC) material 1550C which consists of 4’-(trans, trans-4-alkylbicyclohexyl) carbonates and 4’-(4-(trans,trans-4-alkyl)-4-cyanobicyclohexane, dispersed with fluorescent dye (Benzo 2,1,3 Thiadiazole) in two different concentrations. Photoluminescence has been enhanced for a dye dispersed system which is the key finding of this investigation. UV absorbance study has also been performed and found to be increased for composite system. Enhanced birefringence after dispersion of dye into pure NLC is also a prominent result of this investigation. Relative permittivity, threshold voltage and dielectric anisotropy have also been measured and found to be increased. The outcome of the present work may be very useful in the construction of liquid crystal displays (LCDs).
Spectral characteristics and amplitude tunability of a long period grating with a dual- resonance inside fiber loop mirror are studied in terms of applied stress caused by elongation. Inserting the polarization controller between grating and part of polarization maintaining fiber in the loop structure enables tuning of resonance and interferometric peaks. The maximum sensitivity of demonstrated sensor is of 1.943 dB/mε for the range of 1.1–4.4 mε. Combination of these two optical components allows to measure strain in a wider range comparing with sensors based on standard long period grating.
We report on the absorption properties of polarization-insensitive transmissive and reflective metamaterial absorbers based on two planar aluminium periodic structures and SU-8 epoxy resist. These absorbers were investigated using numerical simulation and experimental methods in the terahertz range (below 2 THz). SU-8 is a very promising organic material for dielectric layers in planar metamaterials, because its application simplifies the process of fabricating these structures and significantly reduces the fabrication time. The experimental absorption of the metamaterial absorbers has narrowband characteristics that were consistent with the numerical simulations. Power flow analysis in the transmissive metamaterial unit cell shows that the absorption in the terahertz range occurs primarily in the SU-8 layer of the absorber.
Guide for Authors
https://www.editorialsystem.com/opelre/journal/for_authors/
OPTO-ELECTRONICS REVIEW is an open access journal. This involves the payment of an article publishing charge (APC) by the authors, their institution or funding body. We make the article freely available immediately upon publication on PAS Jornals platform (https://journals.pan.pl/opelre)
As of July 1st, 2024, there are changes in the fees for open access publications in Opto-Electronics Review: 2000 PLN (500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 200 PLN (50 EUR) per page (see the above link with instructions for Authors for details)
Articles submitted by June 30th, 2024: existing fee: 1750 PLN (or 400 EUR)
Articles submitted from July 1st, 2024: new fee: 2000 PLN (or 500 EUR) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 200 PLN or 50 EUR).
DOFINANSOWANO ZE ŚRODKÓW BUDŻETU PAŃSTWA
Rozwój czasopism naukowych
Nr projektu: RCN/SN/0652/2021/1
Dofinansowanie: 85 700 zł
Całkowita wartość: 85 700 zł
Data podpisania umowy: 6 grudnia 2022 r.
Celem projektu jest wsparcie działalności wydawniczej Opto-Electronics Review w zakresie poprawy widoczności czasopisma na arenie krajowej i międzynarodowej oraz podwyższenia jakości edytorskiej prezentowanych treści.
CO-FINANCED FROM THE STATE BUDGET
Development of scientific journals
Project number: RCN/SN/0652/2021/1
Funding: PLN 85,700
Total value: PLN 85,700
Date of signing the contract: December 6, 2022.
The project aims to support the publishing activities of Opto-Electronics Review to improve the journal's visibility in the national and international arena and increase the editorial quality of the presented content.
Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encouraged. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.
Articles are published in OPELRE in the following categories:
-invited reviews presenting the current state of the knowledge,
-specialized topics at the forefront of optoelectronics and photonics and their applications,
-refereed research contributions reporting on original scientific or technological achievements,
-conference papers printed in normal issues as invited or contributed papers.
Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.
Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.
Abstracting and Indexing:
Arianta
BazTech
EBSCO relevant databases
EBSCO Discovery Service
SCOPUS relevant databases
ProQuest relevant databases
Clarivate Analytics relevant databases
WangFang
additionally:
ProQuesta (Ex Libris, Ulrich, Summon)
Google Scholar
Policies and ethics:
The editors of the journal place particular emphasis on compliance with the following principles:
Ethical policy of Opto-Electronics Review
The ethical policy of Opto-Electronics Review follows the European Code of Conduct for Research Integrity and is also guided by the core practices and policies outlined by the Committee on Publication Ethics (COPE).
Authors must be honest in presenting their results and conclusions of their research. Research misconduct is harmful for knowledge.
Research results
Fabrication, falsification, or selective reporting of data with the intent to mislead or deceive is unethical, as is the theft of data or research results from others. The results of research should be recorded and maintained to allow for analysis and review. Following publication, the data should be retained for a reasonable period and made available upon request. Exceptions may be appropriate in certain circumstances to preserve privacy, to assure patent protection, or for similar reasons.
Authorship
All those who have made a significant contribution should be given chance to be cited as authors. Other individuals who have contributed to the work should be acknowledged. Articles should include a full list of the current institutional affiliations of all authors, both academic and corporate.
Competing interests
All authors, referees and editors must declare any conflicting or competing interests relating to a given article. Competing interests through their potential influence on behavior or content or perception may undermine the objectivity, integrity, or perceived value of publication.
Peer Review
We are committed to prompt evaluation and publication of fully accepted papers in Opto-Electronics Review’s publications. To maintain a high-quality publication, all submissions undergo a rigorous review process.
Characteristics of the peer review process are as follows:
• Simultaneous submissions of the same manuscript to different journals will not be tolerated.
• Manuscripts with contents outside the scope will not be considered for review.
• Opto-Electronics Review is a single-blind review journal.
• Papers will be refereed by at least 2 experts as suggested by the editorial board.
• In addition, Editors will have the option of seeking additional reviews when needed. Authors will be informed when Editors decide further review is required.
• All publication decisions are made by the journal’s Editor-in-Chief based on the referees’ reports. Authors of papers that are not accepted are notified promptly.
• All submitted manuscripts are treated as confidential documents. We expect reviewers to treat manuscripts as confidential material.
• Editors and reviewers involved in the review process should disclose conflicts of interest resulting from direct competitive, collaborative, or other relationships with any of the authors, and remove oneself from cases in which such conflicts preclude an objective evaluation. Privileged information or ideas that are obtained through peer review must not be used for competitive gain.
• A reviewer should be alert to potential ethical issues in the paper and should bring these to the attention of the editor, including any substantial similarity or overlap between the manuscript under consideration and any other published paper of which the reviewer has personal knowledge. Any statement, observation, derivation, or argument that had been previously reported should be accompanied by the relevant citation.
• Personal criticism is inappropriate.
Plagiarism
Reproducing text from other papers without properly crediting the source (plagiarism) or producing many papers with almost the same content by the same authors (self-plagiarism) is not acceptable. Submitting the same results to more than one journal concurrently is unethical. Exceptions are the review articles. Authors may not present results obtained by others as if they were their own. Authors should acknowledge the work of others used in their research and cite publications that have influenced the direction and course of their study.
Plagiarism is not tolerated. All manuscripts submitted to Opto-Electronics Review will be checked for plagiarism (copying text or results from other sources) and self-plagiarism (duplicating substantial parts of authors’ own published work without giving the appropriate references) using the CrossCheck database (iThenticate plagiarism checker).
Duplicate submission
Simultaneous submissions of the same manuscript to different journals will not be tolerated. The submitted article will be removed without consideration.
Corrections and retractions
All authors have an obligation to inform and cooperate with journal editors to provide prompt retractions or correction of errors in published works.
• The journal will issue retractions if:
• There is clear evidence that the findings are unreliable, either as a result of misconduct (e.g., data fabrication or honest error - miscalculation or experimental error);
• The findings have previously been published elsewhere without proper cross-referencing, permission or justification (i.e., cases of redundant publication);
• It constitutes plagiarism;
• It reports unethical research.
• The journal will issue errata, if:
• A small portion of an otherwise reliable publication proves to be misleading (especially because of honest error);
• The author list is incorrect.
Other forms of misconduct include failure to meet clear ethical and legal requirements such as misrepresentation of interests, breach of confidentiality, lack of informed consent and abuse of research subjects or materials. Misconduct also includes improper dealing with infringements, such as attempts to cover up misconduct and reprisals on whistleblowers.
The primary responsibility for handling research misconduct is in the hands of those who employ the researchers. If a possible misconduct is brought to our attention, we will seek advice from the referees and the Editorial Board. If there is the evidence, we will resolve the matter by appropriate corrections in the printed and online journal; by refusing to consider an author's future work and by contacting affected authors and editors of other journals.
Human and Animal Rights
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.
All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the EU Directive 2010/63/EU for animal experiments, and the authors should clearly indicate in the manuscript that such guidelines have been followed.