Bibliografia
Abd Rahman, A. A., Alias, A. B., Jaffar, N. N. & Amir, M. A. (2019). Adsorption of hydrogen sulphide by commercialized rice husk biochar (RHB) & hydrogel biochar composite (RH-HBC). Int. J. Recent Technol. Eng, 8(4), pp. 6864-6870. DOI:10.35940/ijrte.D5207.118419. Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W. & Chen, M. (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource technology, 214, pp. 836-851. DOI:10.1016/j.biortech.2016.05.057. Alagha, O., Manzar, M. S., Zubair, M., Anil, I., Mu’azu, N. D. & Qureshi, A. (2020). Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: coexisting anions effect and mechanistic studies. Nanomaterials, 10(2), 336. DOI:10.3390/nano10020336. Angın, D., Altintig, E. & Köse, T. E. (2013). Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology, 148, pp. 542-549. DOI: 10.1016/j.biortech.2013.08.164. Banu, H. A. T., Karthikeyan, P., Vigneshwaran, S. & Meenakshi, S. (2020). Adsorptive performance of lanthanum encapsulated biopolymer chitosan-kaolin clay hybrid composite for the recovery of nitrate and phosphate from water. International journal of biological macromolecules, 154, pp. 188-197. DOI: 10.1016/j.ijbiomac.2020.03.074. Barquilha, C. E. & Braga, M. C. (2021). Adsorption of organic and inorganic pollutants onto biochars: Challenges, operating conditions, and mechanisms. Bioresource Technology Reports, 15, 100728. DOI:10.1016/j.biteb.2021.100728. Berkessa, Y. W., Mereta, S. T. & Feyisa, F. F. (2019). Simultaneous removal of nitrate and phosphate from wastewater using solid waste from the factory. Applied Water Science, 9, pp. 1-10. DOI:10.1007/s13201-019-0906-z. Biswas, B., Rahman, T., Sakhakarmy, M., Jahromi, H., Eisa, M., Baltrusaitis, J. & Adhikari, S. (2023). Phosphorus adsorption using chemical and metal chloride activated biochars: Isotherms, kinetics and mechanism study. Heliyon, 9(9). DOI:10.1016/j.heliyon.2023.e19830. Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H. W., Moeller, A. & Amelung, W. (2012). Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment. Soil Use and Management, 28(2), pp. 177-184. DOI:10.1111/j.1475-2743.2012.00407.x Bouchemal, N., Belhachemi, M., Merzougui, Z. and Addoun, F. (2009). The effect of temperature and impregnation ratio on the active carbon porosity. Desalination and water treatment, 10(1-3), pp.115-120. DOI:10.5004/dwt.2009.828. Boyd, C. E. (2019). Water quality: an introduction. Springer Nature. DOI 10.1007/978-3-319-17446-4. Buentello-Montoya, D., Zhang, X., Li, J., Ranade, V., Marques, S. & Geron, M. (2020). Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure. Applied energy, 259, 114176. DOI:10.1016/j.apenergy.2019.114176. Chen, C., Fu, Y., Yu, L. L., Li, J. & Li, D. Q. (2017). Removal of methylene blue by seed-watermelon pulp-based low-cost adsorbent: Study of adsorption isotherms and kinetic models. Journal of Dispersion Science and Technology, 38(8), pp. 1142-1146. DOI:10.1080/01932691.2016.1225263. Choi, Y. K., Jang, H. M., Kan, E., Wallace, A. R. & Sun, W. (2019). Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar. Environmental Engineering Research, 24(3), pp. 434-442. DOI:10.4491/eer.2018.296. Dai, Y., Wang, W., Lu, L., Yan, L. & Yu, D. (2020). Utilization of biochar for the removal of nitrogen and phosphorus. Journal of Cleaner Production, 257, 120573. DOI:10.1016/j.jclepro.2020.120573. Deng, Y., Li, M., Zhang, Z., Liu, Q., Jiang, K., Tian, J. & Ni, F. (2021). Comparative study on characteristics and mechanism of phosphate adsorption on Mg/Al modified biochar. Journal of Environmental Chemical Engineering, 9(2), 105079. DOI:10.1016/j.jece.2021.105079. Du, J., Zhang, L., Liu, T., Xiao, R., Li, R., Guo, D. & Zhang, Z. (2019). Thermal conversion of a promising phytoremediation plant (Symphytum officinale L.) into biochar: dynamic of potentially toxic elements and environmental acceptability assessment of the biochar. Bioresource technology, 274, pp. 73-82. DOI:10.1016/j.biortech.2018.11.077. Egbedina, A. O., Adebowale, K. O., Olu-Owolabi, B. I., Unuabonah, E. I. & Adesina, M. O. (2021). Green synthesis of ZnO coated hybrid biochar for the synchronous removal of ciprofloxacin and tetracycline in wastewater. RSC advances, 11(30), pp. 18483-18492. DOI: 10.1039/d1ra01130h. Elaigwu, S. E., Usman, L. A., Awolola, G. V., Adebayo, G. B. & Ajayi, R. M. K. (2010). Adsorption of Pb (II) from aqueous solution by activated carbon prepared from cow dung. Environmental Research Journal, 4(4), pp. 257-260. Feng, Q., Chen, M., Wu, P., Zhang, X., Wang, S., Yu, Z. & Wang, B. (2022). Simultaneous reclaiming phosphate and ammonium from aqueous solutions by calcium alginate-biochar composite: Sorption performance and governing mechanisms. Chemical Engineering Journal, 429, 132166. DOI:10.1016/j.cej.2021.132166. Foo, K. Y. & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), pp. 2-10. DOI:10.1016/j.cej.2009.09.013. Gámiz, B., Hall, K., Spokas, K. A. & Cox, L. (2019). Understanding activation effects on low-temperature biochar for optimization of herbicide sorption. Agronomy, 9(10), 588. DOI: 10.3390/agronomy9100588. Ghosh, M. & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ, 6(4), 18. Gizaw, A., Zewge, F., Kumar, A., Mekonnen, A. & Tesfaye, M. (2021). A comprehensive review on nitrate and phosphate removal and recovery from aqueous solutions by adsorption. AQUA—Water Infrastructure, Ecosystems and Society, 70(7), pp. 921-947. DOI:10.2166/aqua.2021.146. Gray, M., Johnson, M. G., Dragila, M. I. & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and bioenergy, 61, pp. 196-205. Guo, F., Peng, K., Liang, S., Jia, X., Jiang, X. & Qian, L. (2019). Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis. Fuel, 258, 116204. DOI:10.1016/j.biombioe.2013.12.010. Gupta, K. & Khatri, O. P. (2017). Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. Journal of colloid and interface science, 501, pp. 11-21. DOI:10.1016/j.jcis.2017.04.035. Hafshejani, L. D., Hooshmand, A., Naseri, A. A., Mohammadi, A. S., Abbasi, F. & Bhatnagar, A. (2016). Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering, 95, pp. 101-111. DOI: 10.1016/j.ecoleng.2016.06.035. He, J., Strezov, V., Kumar, R., Weldekidan, H., Jahan, S., Dastjerdi, B. H. & Kan, T. (2019). Pyrolysis of heavy metal contaminated Avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products. Journal of Cleaner Production, 234, 1235-1245. DOI:10.1016/j.jclepro.2019.06.285. He, J., Strezov, V., Zhou, X., Kumar, R. & Kan, T. (2020). Pyrolysis of heavy metal contaminated biomass pre-treated with ferric salts: Product characterisation and heavy metal deportment. Bioresource Technology, 313, 123641. DOI:10.1016/j.biortech.2020.123641. Hock, P. E. & Zaini, & M. A. A. (2018). Activated carbons by zinc chloride activation for dye removal–a commentary. Acta chimica slovaca, 11(2), pp. 99-106. DOI: 0.2478/acs-2018-0015. Huang, Y., Chu, H., Wang, D. & Hui, S. (2024). Performance and mechanism of benzene adsorption on ZnCl2 one-step modified corn cob biochar. Environmental Science and Pollution Research, 31(10), pp. 15209-15222. DOI: 10.1007/s11356-024-32183-7. Hung, C. Y., Tsai, W. T., Chen, J. W., Lin, Y. Q. & Chang, Y. M. (2017). Characterization of biochar prepared from biogas digestate. Waste management, 66, pp. 53-60. DOI:10.1016/j.wasman.2017.04.034. Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A. & Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), pp. 406-433. DOI:10.1080/10643389.2015.1096880. Ip, A. W. M., Barford, J. P. & McKay, G. (2009). Reactive Black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface area. Journal of colloid and interface science, 337(1), pp. 32-38. DOI:10.1016/j.jcis.2009.05.015. Itodo, A. U., Itodo, H. U. & Gafar, M. K. (2010). Estimation of specific surface area using Langmuir isotherm method. Journal of Applied Sciences and Environmental Management, 14(4). DOI:10.4314/jasem.v14i4.63287. Jing, X. R., Wang, Y. Y., Liu, W. J., Wang, Y. K. & Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248, pp. 168-174. DOI:10.1016/j.cej.2014.03.006. Kabbashi, N. A., Atieh, M. A., Al-Mamun, A., Mirghami, M. E., Alam, M. D. Z. & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb (II) removal from aqueous solution. Journal of Environmental Sciences, 21(4), pp. 539-544. DOI:10.1016/S1001-0742(08)62305-0. Lalley, J., Han, C., Li, X., Dionysiou, D. D. & Nadagouda, M. N. (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284, pp. 1386-1396. DOI:10.1016/j.cej.2015.08.114. Lawal, A. A., Hassan, M. A., Zakaria, M. R., Yusoff, M. Z. M., Norrrahim, M. N. F., Mokhtar, M. N. & Shirai, Y. (2021). Effect of oil palm biomass cellulosic content on nanopore structure and adsorption capacity of biochar. Bioresource Technology, 332, 125070. DOI:10.1016/j.biortech.2021.125070. Lee, H. S. & Shin, H. S. (2021). Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. Journal of Environmental Management, 299, 113651. DOI:10.1016/j.jenvman.2021.113651. Lee, S. Y. & Park, S. J. (2013). Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. Journal of colloid and interface science, 389(1), pp. 230-235. DOI:10.1016/j.jcis.2012.09.018. Li, B., Hu, J., Xiong, H. & Xiao, Y. (2020). Application and properties of microporous carbons activated by ZnCl2: adsorption behavior and activation mechanism. ACS omega, 5(16), pp. 9398-9407. DOI:10.1021/acsomega.0c00461. Li, X., Zhao, C. & Zhang, M. (2019). Biochar for anionic contaminants removal from water. In Biochar from biomass and waste pp. 143-160. Elsevier. DOI:10.1016/B978-0-12-811729-3.00008-X. Liu, A., Chen, J., Lu, X., Li, D. & Xu, W. (2021). Influence of components interaction on pyrolysis and the explosion of biomass dust. Process Safety and Environmental Protection, 154, pp. 384-392. DOI:10.1016/j.psep.2021.08.032. Liu, L., Ji, M. & Wang, F. (2018). Adsorption of nitrate onto ZnCl2-modified coconut granular activated carbon: kinetics, characteristics, and adsorption dynamics. Advances in Materials Science and Engineering, DOI:10.1155/2018/1939032. Liu, N., Charrua, A. B., Weng, C. H., Yuan, X. & Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource technology, 198, pp. 55-62. DOI:10.1016/j.biortech.2015.08.129. Liu, W. J., Tian, K., Jiang, H. & Yu, H. Q. (2014). Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green chemistry, 16(9), pp. 4198-4205. DOI:10.1039/C4GC00599F. Machado, L. M., Lütke, S. F., Perondi, D., Godinho, M., Oliveira, M. L., Collazzo, G. C. & Dotto, G. L. (2020). Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars. Journal of Environmental Chemical Engineering, 8(6), 104473. DOI:10.1016/j.jece.2020.104473. Majd, M. M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A. & Sillanpää, M. (2022). Adsorption isotherm models: A comprehensive and systematic review (2010− 2020). Science of The Total Environment, 812, 151334. DOI:10.1016/j.scitotenv.2021.151334. Mehdizadeh, S., Sadjadi, S., Ahmadi, S. J. & Outokesh, M. (2014). Removal of heavy metals from aqueous solution using platinum nanopartcles/Zeolite-4A. Journal of Environmental Health Science and Engineering, 12, pp. 1-7. Menya, E., Olupot, P. W., Storz, H., Lubwama, M. & Kiros, Y. (2018). Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chemical Engineering Research and Design, 129, pp. 271-296. DOI:10.1016/j.cherd.2017.11.008. Milmile, S. N., Pande, J. V., Karmakar, S., Bansiwal, A., Chakrabarti, T. & Biniwale, R. B. (2011). Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin. Desalination, 276(1-3), pp. 38-44. DOI:10.1016/j.desal.2011.03.015. Mishra, S. P., Mohapatra, D., Mishra, D., Chattopadhyay, P., Chaudhury, G. R. & Das, R. P. (2014). Arsenic adsorption on natural minerals. J Mater Environ Sci, 5(2), pp. 350-359. Mosa, A., El-Ghamry, A. & Tolba, M. (2018). Functionalized biochar derived from heavy metal-rich feedstock: phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere, 198, pp. 351-363. DOI:10.1016/j.chemosphere.2018.01.113. Muzyka, R., Misztal, E., Hrabak, J., Banks, S. W. & Sajdak, M. (2023). Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy, 263, 126128. DOI:10.1016/j.energy.2022.126128. Nandiyanto, A. B. D., Arinalhaq, Z. F., Rahmadianti, S., Dewi, M. W., Rizky, Y. P. C., Maulidina, A. & Yunas, J. (2020). Curcumin Adsorption on Carbon Microparticles: Synthesis from Soursop (AnnonaMuricata L.) Peel Waste, Adsorption Isotherms and Thermodynamic and Adsorption Mechanism. International Journal of Nanoelectronics & Materials, 13. Olalekan, A. P., Dada, A. O. & Okewale, A. O. (2013). Comparative adsorption isotherm study of the removal of Pb2+ and Zn2+ onto agricultural waste. Res. J. Chem. Environ. Sci, 1, pp. 22-27. Paredes-Laverde, M., Salamanca, M., Diaz-Corrales, J. D., Flórez, E., Silva-Agredo, J. & Torres-Palma, R. A. (2021). Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study. Journal of Environmental Chemical Engineering, 9(4), 105685. DOI:10.1016/j.jece.2021.105685. Pena, J., Villot, A. & Gerente, C. (2020). Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas. Biomass and bioenergy, 132, 105435. DOI:10.1016/j.biombioe.2019.105435. Priya, E., Kumar, S., Verma, C., Sarkar, S. & Maji, P. K. (2022). A comprehensive review on technological advances of adsorption for removing nitrate and phosphate from wastewater. Journal of Water Process Engineering, 49, 103159. DOI:10.1016/j.jwpe.2022.103159. Sayadi, M., Farasati, M., G Mahmoodlu, M. & Rostami Charati, F. (2020). Removal of nitrate, ammonium, and phosphate from water using conocarpus and paulownia plant biochar. Iranian Journal of Chemistry and Chemical Engineering, 39(4), pp. 205-222. Sefatlhi, K. L., Ultra Jr, V. U. & Majoni, S. (2024). Chemical and Structural Characteristics of Biochars from Phytoremediation Biomass of Cymbopogon Citratus, Cymbopogon Nardus, and Chrysopogon Zizanioides. Waste and Biomass Valorization, 15(1), pp. 283-300. DOI:10.1007/s12649-023-02164-x. Shen, M., Song, B., Zeng, G., Zhang, Y., Teng, F. & Zhou, C. (2021). Surfactant changes lead adsorption behaviors and mechanisms on microplastics. Chemical Engineering Journal, 405, 126989. Tekin, B. & Açikel, U. (2022). Adsorption isotherms for removal of heavy metal ions (copper and nickel) from aqueous solutions in single and binary adsorption processes. Gazi University Journal of Science, 36(2), pp. 495-509. DOI:10.35378/gujs.1066137. Thue, P. S., Lima, D. R., Lima, E. C., Teixeira, R. A., dos Reis, G. S., Dias, S. L. & Machado, F. M. (2022). Comparative studies of physicochemical and adsorptive properties of biochar materials from biomass using different zinc salts as activating agents. Journal of Environmental Chemical Engineering, 10(3), 107632. DOI:10.1016/j.jece.2022.107632. Thue, P. S., Lima, D. R., Lima, E. C., Teixeira, R. A., dos Reis, G. S., Dias, S. L. & Machado, F. M. (2022). Comparative studies of physicochemical and adsorptive properties of biochar materials from biomass using different zinc salts as activating agents. Journal of Environmental Chemical Engineering, 10(3), 107632. DOI:10.1016/j.jece.2022.107632. Ultra, V. U., Ngwako, K. M. & Eliason, P. (2022). Physiological Responses, Growth, and Heavy Metal Accumulation of Citronella (Cymbopogon nardus Rendle.) in Cu-Ni Mine Tailings as Affected by Soil Amendments. Philippine Journal of Science, 151(3). DOI:10.56899/151.03.36. Wang, L., Xu, Z., Fu, Y., Chen, Y., Pan, Z., Wang, R. & Tan, Z. (2018). Comparative analysis on adsorption properties and mechanisms of nitrate and phosphate by modified corn stalks. RSC advances, 8(64), pp. 36468-36476. DOI:10.1039/C8RA06617E. Wang, T., Zheng, J., Liu, H., Peng, Q., Zhou, H. & Zhang, X. (2021). Adsorption characteristics and mechanisms of Pb2+ and Cd2+ by a new agricultural waste–Caragana korshinskii biomass derived biochar. Environmental Science and Pollution Research, 28, pp. 13800-13818. DOI:10.1007/s11356-020-11571-9. Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y. & Deng, S. (2015). Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−). Chemosphere, 119, pp. 646-653. DOI:10.1016/j.chemosphere.2014.07.084. Williams, P. T. & Reed, A. R. (2004). High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste. Journal of analytical and applied pyrolysis, 71(2), pp. 971-986. DOI:10.1016/j.jaap.2003.12.007. Wu, B., Wan, J., Zhang, Y., Pan, B. & Lo, I. M. (2019). Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms. Environmental science & technology, 54(1), pp. 50-66. DOI:10.1021/acs.est.9b05569. Xia, M., Chen, Z., Li, Y., Li, C., Ahmad, N. M., Cheema, W. A. & Zhu, S. (2019). Removal of Hg (II) in aqueous solutions through physical and chemical adsorption principles. RSC advances, 9(36), pp. 20941-20953. DOI:10.1039/C9RA01924C. Xia, Y., Zhou, J. J., Gong, Y. Y., Li, Z. J. & Zeng, E. Y. (2020). Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants. Environmental Pollution, 265, 115061. DOI:10.1016/j.envpol.2020.115061. Xie, T., Reddy, K. R., Wang, C., Yargicoglu, E. & Spokas, K. (2015). Characteristics and applications of biochar for environmental remediation: a review. Critical Reviews in Environmental Science and Technology, 45(9), pp. 939-969. DOI:10.1080/10643389.2014.924180. Xu, D. D., Ma, R. R., Fu, A. P., Guan, Z., Zhong, N., Peng, H. & Duan, C. G. (2021). Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric. Nature communications, 12(1), 655. DOI:10.1038/s41467-021-20945-7. Yağmur, H. K. & Kaya, İ. (2021). Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. Journal of molecular structure, 1232, 130071. DOI:10.1016/j.molstruc.2021.130071. Yan, L., Liu, Y., Zhang, Y., Liu, S., Wang, C., Chen, W. & Zhang, Y. (2020). ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology, 297, 122381. DOI:10.1016/j.biortech.2019.122381. Yang, S., Katuwal, S., Zheng, W., Sharma, B. & Cooke, R. (2021). Capture and recover dissolved phosphorous from aqueous solutions by a designer biochar: Mechanism and performance insights. Chemosphere, 274, 129717. DOI:10.1016/j.chemosphere.2021.12 Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P. & Yang, L. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of hazardous materials, 190(1-3), pp. 501-507. DOI:10.1016/j.jhazmat.2011.03.083. Yao, Y., Gao, B., Zhang, M., Inyang, M. & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in sandy soil. Chemosphere, 89(11), pp. 1467-1471. DOI:10.1016/j.chemosphere.2012.06.002. Yin, Q., Ren, H., Wang, R. & Zhao, Z. (2018). Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content. Science of the Total Environment, 631, pp. 895-903. DOI:10.1016/j.scitotenv.2018.03.091. Zhang, M., Song, G., Gelardi, D. L., Huang, L., Khan, E., Mašek, O. & Ok, Y. S. (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, 116303. DOI:10.1016/j.watres.2020.116303. Zhao, B., Xu, X., Xu, S., Chen, X., Li, H. & Zeng, F. (2017). Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride. Bioresource technology, 243, pp. 375-383.DOI:10.1016/j.biortech.2017.06.032. Zhao, L., Cao, X., Zheng, W., Wang, Q. & Yang, F. (2015). Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar. Chemosphere, 136, pp. 133-139. DOI:10.1016/j.chemosphere.2015.04.053. Zhao, S., Zhou, N. & Shen, X. (2016). Driving mechanisms of nitrogen transport and transformation in lacustrine wetlands. Science China Earth Sciences, 59, pp. 464-476. DOI:10.1007/s11430-015-5230-3. Zubir, M. H. M. & Zaini, M. A. A. (2020). Twigs-derived activated carbons via H3PO4/ZnCl2 composite activation for methylene blue and congo red dye removal. Scientific reports, 10(1), 14050. DOI:10.1038/s41598-020-71034-6.
Przejdź do artykułu