Nauki Techniczne

Bulletin of the Polish Academy of Sciences Technical Sciences

Zawartość

Bulletin of the Polish Academy of Sciences Technical Sciences | 2021 | 69 | 3

Pobierz PDF Pobierz RIS Pobierz Bibtex

Bibliografia

  1.  H. Das, J. K. Rout, and S.C.N. Dey, Maharana, Applied Intelligent Decision Making in Machine Learning, CRC Press, 2020.
  2.  B. Zhang, Y. Wu, J. Lu, and K.L. Du, “Evolutionary computation and its applications in neural and fuzzy systems”, Appl. Comput. Intell. Soft Comput. 2011, 938240 (2011), doi: 10.1155/2011/938240
  3.  M. Injadat, A. Moubayed, A.B. Nassif, and A. Shami, “Machine learning towards intelligent systems: applications, challenges, and opportunities”, Artif. Intell. Rev. (2021), https://doi.org/10.1007/s10462-020-09948-w.
  4.  I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT Press, 2016.
  5.  J. Heaton, “Applications of Deep Neural Networks”, arXiv: 2009.05673v2 [cs. LG] 2021, Heaton Research, Inc.
  6.  E. Kayacan and M.A. Khanesar, Fuzzy Neural Networks for Real Time Control Applications: Concepts, Modeling and Algorithms for Fast Learning, Elsevier, 2015.
  7.  A. Burkov, Machine Learning Engineering, True Positive Inc., 2020.
  8.  A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks, NIPS, 2012.
  9.  A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation, Wiley, 2009.
  10.  A. Khan, A. Sohail, U. Zahoora, and A.S. Qureshi, “A survey of the recent architectures of deep convolutional neural networks”, Artif. Intell. Rev. 53, 5455–5516 (2020), doi: 10.1007/s10462-020-09825-6.
  11.  A. Osowska-Kurczab, T. Markiewicz, M. Dziekiewicz, and M. Lorent, “Multi-feature ensemble system for renal tumour classification”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136749 (2021).
  12.  E. Kot, Z. Krawczyk, K. Siwek, P. Czwarnowski, and L. Królicki, “Deep learning-based framework for tumour detection and semantic segmentation”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136750 (2021).
  13.  Z. Krawczyk and J. Starzyński, “Segmentation of bone structures with the use of deep learning techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136751 (2021).
  14.  T. Leś, “U-Net based frames partitioning and volumetric analysis for kidney detection in tomographic images”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e137051 (2021).
  15.  M. Kołodziej, A. Majkowski, P. Tarnowski, R. Rak, and A. Rysz, “A New Method of Cardiac Sympathetic Index Estimation Using 1D-Convolutional Neural Network”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136921 (2021).
  16.  E. Majda-Zdancewicz et al., “Deep learning vs. feature engineering in the assessment of voice signals for diagnosis in Parkinson’s disease”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e137347 (2021).
  17.  F. Gil and S. Osowski, “Fusion of feature selection methods in gene recognition”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136748 (2021).
  18.  K. Godlewski and B. Sawicki, “Optimisation of MCTS player for The Lord of the Rings: the card game”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136752 (2021).
Przejdź do artykułu

Autorzy i Afiliacje

Stanislaw Osowski
1 2
ORCID: ORCID
Bartosz Sawicki
1
ORCID: ORCID
Andrzej Cichocki
3

  1. Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
  2. Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  3. RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Recently, the analysis of medical imaging is gaining substantial research interest, due to advancements in the computer vision field. Automation of medical image analysis can significantly improve the diagnosis process and lead to better prioritization of patients waiting for medical consultation. This research is dedicated to building a multi-feature ensemble model which associates two independent methods of image description: textural features and deep learning. Different algorithms of classification were applied to single-phase computed tomography images containing 8 subtypes of renal neoplastic lesions. The final ensemble includes a textural description combined with a support vector machine and various configurations of Convolutional Neural Networks. Results of experimental tests have proved that such a model can achieve 93.6% of weighted F1-score (tested in 10-fold cross validation mode). Improvement of performance of the best individual predictor totalled 3.5 percentage points.
Przejdź do artykułu

Bibliografia

  1.  “Kidney cancer statistics”, Cancer Research UK, (2020). [Online]. Available: https://www.cancerresearchuk.org/health-professional/ cancer-statistics/statistics-by-cancer-type/kidney-cancer. [Accessed: 05-Oct-2020].
  2.  L. Zhou et al., “A Deep Learning-Based Radiomics Model for Differentiating Benign and Malignant Renal Tumors”, Translational Oncology 12(2), 292‒300, (2019).
  3.  H. Coy et al., “Deep learning and radiomics: the utility of Google TensorFlowTM Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT”, Abdominal Radiology 44(6), 2009‒2020, (2019).
  4.  S. Tabibu, P.K. Vinod, and C.V. Jawahar, “Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning”, Scientific Reports 9(1), 10509, (2019).
  5.  S. Han, S.I. Hwang, and H.J. Lee, “The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method”, Journal of Digital Imaging 32, 638–643, (2019).
  6.  Q. Chaudry, S.H. Raza, A.N. Young, and M.D.Wang, “Automated renal cell carcinoma subtype classification using morphological, textural and wavelets based features”, Journal of Signal Processing Systems 55(1‒3), 15‒23, (2009).
  7.  B. Kocak et al., “Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation”, European Journal of Radiology, 107, 149‒157, (2018).
  8.  S.P. Raman, Y. Chen, J.L. Schroeder, P. Huang, and E.K. Fishman, “CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology”, Academic Radiology, 12, 1587‒1596, (2014).
  9.  W. Sun, B. Zheng, and W. Qian, “Computer aided lung cancer diagnosis with deep learning algorithms”, Proceedings of the International Society for Optics and Photonics Conference (2016).
  10.  H. Polat and D.M. Homay, “Classification of Pulmonary CT Images by Using Hybrid 3D-Deep Convolutional Neural Network Architecture”, Applied Sciences, 9(5), 940, (2019).
  11.  W. Alakwaa, M. Nassef, and A. Badr, “Lung cancer Detection and Classification with 3D Convolutional Neural Network (3DCNN)”, International Journal of Advanced Computer Science and Applications (IJACSA) 8(8), (2017).
  12.  M.A. Hussain, G. Hamarneh, and R. Garbi, “Renal Cell Carcinoma Staging with Learnable Image Histogram-Based Deep Neural Network”, Lecture Notes in Computer Science, 11861, 533‒540, (2019).
  13.  O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, Medical Image Computing and Computer-Assisted Intervention (MICCAI), 9351, (2015).
  14.  K. Yin et al., “Deep learning segmentation of kidneys with renal cell carcinoma”, Journal of Clinical Oncology 37(15), (2019).
  15.  J. Kurek et al., “Deep learning versus classical neural approach to mammogram recognition”, Bul. Pol. Acad. Sci. Tech. Sci. 66(6), 831‒840, (2018).
  16.  A. Osowska-Kurczab, T. Markiewicz, M. Dziekiewicz and M. Lorent, “Textural and deep learning methods in recognition of renal cancer types based on CT images”, Proceedings of the International Joint Conference on Neural Networks (IJCNN), (2020).
  17.  A. Osowska-Kurczab, T. Markiewicz, M. Dziekiewicz, and M. Lorent, “Combining texture analysis and deep learning in renal tumour classification task”, Proceedings of the Computational Problems of Electrical Engineering (CPEE), (2020).
  18.  R.M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification”, IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), (1973).
  19.  A.F. Costa, G. Humpire-Mamani, and A.J.M. Traina, “An Efficient Algorithm for Fractal Analysis of Textures,”, Proceedings of 25th SIBGRAPI Conference on Graphics, Patterns and Images, 39‒46, (2012).
  20.  P. Shanmugavadivu and V. Sivakumar, “Fractal Dimension Based Texture Analysis of Digital Images”, Procedia Engineering, 38, 2981‒2986, (2012).
  21.  M. Unser, “Local Linear Transforms for Texture Analysis”, Proceedings of the 7th IEEE International Conference on Pattern Recognition (ICPR), II, 1206‒1208, (1984).
  22.  M. Unser, “Sum and difference histograms for texture classification”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 118‒125, (1986).
  23.  C. Cortes and V. Vapnik, “Support-vector network”, Machine Learning 20(3), 273‒297, (1995).
  24.  Y. Bengio, “Learning Deep Architectures for AI”, Foundations and Trends in Machine Learning 2 (1), 1–127, (2009).
  25.  Y. Bengio, Y. LeCun, and G. Hinton, “Deep Learning”, Nature 521, 436–444, (2015).
  26.  I. Goodfellow, Y. Bengio, and A. Courville: Deep Learning, MIT Press, 2016.
  27.  A. Krizhevsky, I. Sutskever, and G. Hinton, “Image net classification with deep convolutional neural networks”, Advances in Neural Information Processing Systems 25, 1‒9, (2012).
  28.  K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 770‒778, (2016).
  29.  C. Szegedy et al., “Going deeper with convolutions”, Proceedings of the 28th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 1‒9, (2015).
  30.  C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision”, Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2818‒2826, (2016).
  31.  C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inceptionv4, Inception-ResNet and the impact of residual connections on learning”, Proceedings of 31st Association for the Advancement of Artificial Intelligence on Artificial Intelligence (AAAI), 1‒12, (2016).
  32.  P.N. Tan, M. Steinbach, and V. Kumar: Introduction to Data Mining, Pearson Education, Boston, 2006.
  33.  H. Moch, A.L. Cubilla, P.A. Humphrey, V.E. Reuter, and T.M. Ulbright, “The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours”, European Urology, 70(1), 93‒105, (2016).
  34.  T. Gudbjartsson et al., “Renal oncocytoma: a clinicopathological analysis of 45 consecutive cases”, BJU International 96(9), 1275‒1279, (2005).
Przejdź do artykułu

Autorzy i Afiliacje

Aleksandra Maria Osowska-Kurczab
1
ORCID: ORCID
Tomasz Markiewicz
1 2
ORCID: ORCID
Miroslaw Dziekiewicz
2
Malgorzata Lorent
2

  1. Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  2. Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

For brain tumour treatment plans, the diagnoses and predictions made by medical doctors and radiologists are dependent on medical imaging. Obtaining clinically meaningful information from various imaging modalities such as computerized tomography (CT), positron emission tomography (PET) and magnetic resonance (MR) scans are the core methods in software and advanced screening utilized by radiologists. In this paper, a universal and complex framework for two parts of the dose control process – tumours detection and tumours area segmentation from medical images is introduced. The framework formed the implementation of methods to detect glioma tumour from CT and PET scans. Two deep learning pre-trained models: VGG19 and VGG19-BN were investigated and utilized to fuse CT and PET examinations results. Mask R-CNN (region-based convolutional neural network) was used for tumour detection – output of the model is bounding box coordinates for each object in the image – tumour. U-Net was used to perform semantic segmentation – segment malignant cells and tumour area. Transfer learning technique was used to increase the accuracy of models while having a limited collection of the dataset. Data augmentation methods were applied to generate and increase the number of training samples. The implemented framework can be utilized for other use-cases that combine object detection and area segmentation from grayscale and RGB images, especially to shape computer-aided diagnosis (CADx) and computer-aided detection (CADe) systems in the healthcare industry to facilitate and assist doctors and medical care providers.
Przejdź do artykułu

Bibliografia

  1.  Cancer Research UK Statistics from the 5th of March 2020. [Online]. https://www.cancerresearchuk.org/health-professional/cancer- statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours/incidence#ref-
  2.  E. Kot, Z. Krawczyk, K. Siwek, and P.S. Czwarnowski, “U-Net and Active Contour Methods for Brain Tumour Segmentation and Visualization,” 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom, 2020, pp. 1‒7, doi: 10.1109/ IJCNN48605.2020.9207572.
  3.  J. Kim, J. Hong, H. Park, “Prospects of deep learning for medical imaging,” Precis. Future. Med. 2(2), 37–52 (2018), doi: 10.23838/ pfm.2018.00030.
  4.  E. Kot, Z. Krawczyk, and K. Siwek, “Brain Tumour Detection and Segmentation Using Deep Learning Methods,” in Computational Problems of Electrical Engineering, 2020.
  5.  A.F. Tamimi and M. Juweid, “Epidemiology and Outcome of Glioblastoma,” in: Glioblastoma [Online]. Brisbane (AU): Codon Publications, 2017, doi: 10.15586/codon.glioblastoma.2017.ch8.
  6.  A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classification with deep convolutional neural networks,” in: Advances in Neural Information Processing Systems, 2012, p. 1097‒1105.
  7.  M.A. Al-masni, et al., “Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network,” 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, 2017, pp. 1230‒1233, doi: 10.1109/EMBC.2017.8037053.
  8.  P. Yin, R. Yuan, Y. Cheng, and Q. Wu, “Deep Guidance Network for Biomedical Image Segmentation,” IEEE Access 8, 116106‒116116 (2020), doi: 10.1109/ACCESS.2020.3002835.
  9.  R. Sindhu, G. Jose, S. Shibon, and V. Varun, “Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans”, Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105751I, 2018, doi: 10.1117/12.2293699.
  10.  R. Ezhilarasi and P. Varalakshmi, “Tumor Detection in the Brain using Faster R-CNN,” 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), Palladam, India, 2018, pp. 388‒392, doi: 10.1109/I-SMAC.2018.8653705.
  11.  S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-timeobject detection with region proposal networks,” in Advances in neuralinformation processing systems, 2015, pp. 91–99.
  12.  S. Liu, H. Zheng, Y. Feng, and W. Li, “Prostate cancer diagnosis using deeplearning with 3D multiparametric MRI,” in Proceedings of Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, Bellingham: International Society for Optics and Photonics (SPIE), 2017. p. 1013428.
  13.  M. Gurbină, M. Lascu, and D. Lascu, “Tumor Detection and Classification of MRI Brain Image using Different Wavelet Transforms and Support Vector Machines,” in 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 2019, pp. 505‒508, doi: 10.1109/TSP.2019.8769040.
  14.  H. Dong, G. Yang, F. Liu, Y. Mo, and Y. Guo, “Automatic brain tumor detection and segmentation using U-net based fully convolutional networks,” in: Medical image understanding and analysis, pp. 506‒517, eds. Valdes Hernandez M, Gonzalez-Castro V, Cham: Springer, 2017.
  15.  O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, vol 9351, doi: 10.1007/978-3-319- 24574-4_28.
  16.  K. Hu, C. Liu, X. Yu, J. Zhang, Y. He, and H. Zhu, “A 2.5D Cancer Segmentation for MRI Images Based on U-Net,” in 2018 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, 2018, pp. 6‒10, doi: 10.1109/ICISCE.2018.00011.
  17.  H.N.T.K. Kaldera, S.R. Gunasekara, and M.B. Dissanayake, “Brain tumor Classification and Segmentation using Faster R-CNN,” Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 2019, pp. 1‒6, doi: 10.1109/ ICASET.2019.8714263.
  18.  B. Stasiak, P. Tarasiuk, I. Michalska, and A. Tomczyk, “Application of convolutional neural networks with anatomical knowledge for brain MRI analysis in MS patients”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 857–868 (2018), doi: 10.24425/bpas.2018.125933.
  19.  L. Hui, X. Wu, and J. Kittler, “Infrared and Visible Image Fusion Using a Deep Learning Framework,” 24th International Conference on Pattern Recognition (ICPR), Beijing, 2018, pp. 2705‒2710, doi: 10.1109/ICPR.2018.8546006.
  20.  K. Simonyan and A. Zisserman, “Very deep convolutional networks for largescale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  21.  M. Simon, E. Rodner, and J. Denzler, “ImageNet pre-trained models with batch normalization,” arXiv preprint arXiv:1612.01452, 2016.
  22.  VGG19-BN model implementation. [Online]. https://pytorch.org/vision/stable/_modules/torchvision/models/vgg.html
  23.  D. Jha, M.A. Riegler, D. Johansen, P. Halvorsen, and H.D. Johansen, “DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation,” 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 2020, pp. 558‒564, doi: 10.1109/CBMS49503.2020.00111.
  24.  Jupyter notebook with fusion code. [Online]. https://github.com/ekote/computer-vision-for-biomedical-images-processing/blob/master/ papers/polish_acad_of_scienc_2020_2021/fusion_PET_CT_2020.ipynb
  25.  E. Geremia et al., “Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images”, NeuroImage 57(2), 378‒390 (2011).
  26.  D. Anithadevi and K. Perumal, “A hybrid approach based segmentation technique for brain tumor in MRI Images,” Signal Image Process.: Int. J. 7(1), 21‒30 (2016), doi: 10.5121/sipij.2016.7103.
  27.  S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv preprint arXiv:1502.03167.
  28.  S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137‒1149, (2017), doi: 10.1109/TPAMI.2016.2577031.
  29.  T-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. Lawrence Zitnick, “Microsoft COCO: common objects incontext” in Computer Vision – ECCV 2014, 2014, p. 740–755.
  30.  Original Mask R-CNN model. [Online]. https://github.com/matterport/Mask_RCNN/releases/tag/v2.0
  31.  Mask R-CNN model. [Online]. https://github.com/ekote/computer-vision-for-biomedical-images-processing/releases/tag/1.0, doi: 10.5281/ zenodo.3986798.
  32.  T. Les, T. Markiewicz, S. Osowski, and M. Jesiotr, “Automatic reconstruction of overlapped cells in breast cancer FISH images,” Expert Syst. Appl. 137, 335‒342 (2019), doi: 10.1016/j.eswa.2019.05.031.
  33.  J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation”, Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2015, pp. 3431‒3440.
  34.  The U-Net architecture adjusted to 64£64 input image size. [Online]. http://bit.ly/unet64x64
Przejdź do artykułu

Autorzy i Afiliacje

Estera Kot
1
Zuzanna Krawczyk
1
Krzysztof Siwek
1
ORCID: ORCID
Leszek Królicki
2
Piotr Czwarnowski
2

  1. Warsaw University of Technology, Faculty of Electrical Engineering, Pl. Politechniki 1, 00-661 Warsaw, Poland
  2. Medical University of Warsaw, Nuclear Medicine Department, ul. Banacha 1A, 02-097 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper is focused on automatic segmentation task of bone structures out of CT data series of pelvic region. The authors trained and compared four different models of deep neural networks (FCN, PSPNet, U-net and Segnet) to perform the segmentation task of three following classes: background, patient outline and bones. The mean and class-wise Intersection over Union (IoU), Dice coefficient and pixel accuracy measures were evaluated for each network outcome. In the initial phase all of the networks were trained for 10 epochs. The most exact segmentation results were obtained with the use of U-net model, with mean IoU value equal to 93.2%. The results where further outperformed with the U-net model modification with ResNet50 model used as the encoder, trained by 30 epochs, which obtained following result: mIoU measure – 96.92%, “bone” class IoU – 92.87%, mDice coefficient – 98.41%, mDice coefficient for “bone” – 96.31%, mAccuracy – 99.85% and Accuracy for “bone” class – 99.92%.
Przejdź do artykułu

Bibliografia

  1.  E. Stindel, et al., “Bone morphing: 3D morphological data for total knee arthroplasty” Comput. Aided Surg. 7(3), 156–168 (2002), doi: 10.1002/igs.10042.
  2.  F. Azimifar, K. Hassani, A.H. Saveh, and F.T. Ghomsheh, “A medium invasiveness multi-level patient’s specific template for pedicle screw placement in the scoliosis surgery”, Biomed. Eng. Online 16, 130 (2017), doi: 10.1186/s12938-017-0421-0.
  3.  L. Yahia-Cherif, B. Gilles, T. Molet, and N. Magnenat-Thalmann, “Motion capture and visualization of the hip joint with dynamic MRI and optical systems”, Comp. Anim. Virtual Worlds 15, 377–385 (2004).
  4.  V. Pekar, T.R. McNutt, and M.R. Kaus, “Automated modelbased organ delineation for radiotherapy planning in prostatic region”, Int. J. Radiat. Oncol. Biol. Phys. 60(3), 973–980 (2004).
  5.  D. Ravì, et al., “Deep learning for health informatics,” IEEE J. Biomed. Health. Inf. 21(1), 4–21 (2017), doi: 10.1109/JBHI.2016.2636665.
  6.  G. Litjens, et al., “A survey on deep learning in medical image analysis”, Med. Image Anal. 42, 60–88 (2017), doi: 10.1016/j. media.2017.07.005.
  7.  Z. Krawczyk and J. Starzyński, “YOLO and morphingbased method for 3D individualised bone model creation”, 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom (2020), doi: 10.1109/IJCNN48605.2020.9206783.
  8.  J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 3431–3440 (2015), doi: 10.1109/CVPR.2015.7298965.
  9.  H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing Network,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 6230–6239 (2017), doi: 10.1109/CVPR.2017.660.
  10.  O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation”, in Navab N., Hornegger J., Wells W., Frangi A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol. 9351, Springer, Cham. (2015), doi: 10.1007/978-3-319-24574-4_28.
  11.  V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolutional encoder-decoder architecture for image segmentation”, IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017), doi: 10.1109/TPAMI.2016.2644615.
  12.  Z. Krawczyk and J. Starzyński, “Deep learning approach for bone model creation”, 2020 IEEE 21st International Conference on Computational Problems of Electrical Engineering (CPEE), (2020), doi: 10.1109/CPEE50798.2020.9238678.
  13.  W. Qin, J. Wu, F. Han, Y. Yuan, W. Zhao, B. Ibragimov, J. Gu, and L. Xing, “Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation”, Phys. Med. Biol. 63(9), 95017 (2018), doi: 10.1088/1361‒6560/aabd19.
  14.  S. Nikolov, et al., “Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy”, Technical Report, ArXiv, (2018), doi: arXiv:1809.04430.
  15.  T.L. Kline, et al., “Performance of an artificial multi-observer deep neural network for fully automated segmentation of polycystic kidneys”, J Digit Imaging 30, 442–448 (2017), doi: 10.1007/s10278-017-9978-1.
  16.  A. Wadhwa, A. Bhardwaj, and V.S. Verma, “A review on brain tumor segmentation of MRI images”, Magn. Reson. Imaging 61, 247–259 (2019), doi: 10.1016/j.mri.2019.05.043.
  17.  J. Xu, X. Luo, G. Wang, H. Gilmore, and A. Madabhushi, “A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images”, Neurocomputing 191, 214–223 (2016), doi: 10.1016/j.neucom.2016.01.034.
  18.  Z. Swiderska-Chadaj, T. Markiewicz, J. Gallego, G. Bueno, B. Grala, and M. Lorent, “Deep learning for damaged tissue detection and segmentationin Ki-67 brain tumor specimens based on the U-net model”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 849–856 (2018), doi: 10.24425/bpas.2018.125932.
  19.  S. Lindgren Belal, et. al., “Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CTbased 3D quantification of skeletal metastases”, Eur. J. Radiol. 113, 89–95 (2019), doi: 10.1016/j.ejrad.2019.01.028.
  20.  A. Klein, J. Warszawski, J. Hillengaß, and K.H. Maier-Hein, “Automatic bone segmentation in whole-body CT images”, Int J Comput Assist Radiol Surg. 14(1), 21–29 (2019), doi: 10.1007/s11548-018-1883-7.
  21.  J. Minnema, M. van Eijnatten, W. Kouw, F. Diblen, A. Mendrik, and J. Wolff, “CT image segmentation of bone for medical additive manufacturing using a convolutional neural network”, Comput. Biol. Med. 103, 130–139 (2018), https://doi.org/10.1016/j. compbiomed.2018.10.012.
  22.  T. Les, T. Markiewicz, T. Osowski, and M. Jesiotr, “Automatic reconstruction of overlapped cells in breast cancer FISH images”, Expert Syst. Appl. 137, 335–342 (2019).
  23.  F. Yokota, T. Okada, M. Takao, N. Sugano, Y. Tada, and Y. Sato, “Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure”, Med Image Comput Comput Assist Interv., 811–818 (2019), doi: 10.1007/978-3-642-04271-3_98.
  24.  D. Gupta, “Semantic segmentation library”, accessed 19-Jan-202, [Online], Available: https: //divamgupta.com/image- segmentation/2019/06/06/ deep-learning-semantic-segmentation-keras.html.
  25.  A.B. Jung, et al., “Imgaug library”, accessed 01-Feb-2020, [Online], Available: https://github.com/aleju/imgaug (2020).
  26.  F. Chollet, et al., “Keras”, [Online], Available: https://keras.io, (2015).
  27.  M. Abadi, et al., “TensorFlow: Large-scale machine learning on heterogeneous systems”, [Online], Available: tensorflow.org, (2015).
  28.  K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 770–778 (2016), doi: 10.1109/CVPR.2016.90.
  29.  K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, CoRR, (2015).
  30.  O. Russakovsky, et al., “ImageNet large scale visual recognition challenge”, Int. J. Comput. Vision 115(3), 211–252 (2015), doi: 10.1007/ s11263-015-0816-y.
  31.  VGG network weights, [Online], Available: https://www.robots.ox.ac.uk/~vgg/research/very_deep/
  32.  Resnet network weights, [Online], Available: https://github.com/KaimingHe/deep-residual-networks.
  33.  P. Leydon, M. O’Connell, D. Greene, K. M. Curran, “Bone Segmentation in Contrast Enhanced Whole-Body Computed Tomography”, arXiv (2020), https://arxiv.org/abs/2008.05223.
Przejdź do artykułu

Autorzy i Afiliacje

Zuzanna Krawczyk
1
Jacek Starzyński
1

  1. Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This work presents an automatic system for generating kidney boundaries in computed tomography (CT) images. This paper presents the main points of medical image processing, which are the parts of the developed system. The U-Net network was used for image segmentation, which is now widely used as a standard solution for many medical image processing tasks. An innovative solution for framing the input data has been implemented to improve the quality of the learning data as well as to reduce the size of the data. Precision-recall analysis was performed to calculate the optimal image threshold value. To eliminate false-positive errors, which are a common issue in segmentation based on neural networks, the volumetric analysis of coherent areas was applied. The developed system facilitates a fully automatic generation of kidney boundaries as well as the generation of a three-dimensional kidney model. The system can be helpful for people who deal with the analysis of medical images, medical specialists in medical centers, especially for those who perform the descriptions of CT examination. The system works fully automatically and can help to increase the accuracy of the performed medical diagnosis and reduce the time of preparing medical descriptions.
Przejdź do artykułu

Bibliografia

  1.  Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition”, Proc. IEEE 86(11), 2278‒2324 (1998), doi: 10.1109/5.726791.
  2.  F. Isensee, “An attempt at beating the 3D U-Net”, ed. K.H. Maier-Hein, 2019.
  3.  Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation”, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016), 424‒432, Springer International Publishing, 2016.
  4.  C. Li, W. Chen, and Y. Tan, “Render U-Net: A Unique Perspective on Render to Explore Accurate Medical Image Segmentation”, Appl. Sci. 10(18), 6439 (2020), doi: 10.3390/app10186439.
  5.  Z. Fatemeh, S. Nicola, K. Satheesh, and U. Eranga, “Ensemble U‐net‐based method for fully automated detection and segmentation of renal masses on computed tomography images”, Med. Phys. 47(9), 4032‒4044 (2020), doi: 10.1002/mp.14193.
  6.  O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, ArXiv, abs/1505.04597, 2015.
  7.  M.E.J. Ferlay, F. Lam, M. Colombet, L. and Mery. “Global Cancer Observatory: Cancer Today.” [Online] Available: https://gco.iarc.fr/ today, accessed (accessed).
  8.  P.A. Humphrey, H. Moch, A.L. Cubilla, T. M. Ulbright, and V.E. Reuter, “The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours”, Eur. Urol. 70(1), 106‒119 (2016), doi: 10.1016/j.eururo.2016.02.028.
  9.  D.L. Pham, C. Xu, and J.L. Prince, “Current Methods in Medical Image Segmentation”, Ann. Rev. Biomed. Eng. 2(1), 315‒337 (2000), doi: 10.1146/annurev.bioeng.2.1.315.
  10.  B. Tsagaan, A. Shimizu, H. Kobatake, and K. Miyakawa, “An Automated Segmentation Method of Kidney Using Statistical Information”, in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002, pp. 556‒563, Springer Berlin Heidelberg, 2002.
  11.  J.C. Bezdek, “Objective Function Clustering”, in Pattern Recognition with Fuzzy Objective Function Algorithms , pp. 43‒93, Boston: Springer US, 1981.
  12.  K. Sharma et al., “Automatic Segmentation of Kidneys using Deep Learning for Total Kidney Volume Quantification in Autosomal Dominant Polycystic Kidney Disease”, Sci. Rep. 7(1), 2049 (2017), doi: 10.1038/s41598-017-01779-0.
  13.  P. Jackson, N. Hardcastle, N. Dawe, T. Kron, M.S. Hofman, and R. J. Hicks, “Deep Learning Renal Segmentation for Fully Automated Radiation Dose Estimation in Unsealed Source Therapy”, Front. Oncol. 14(8), 215, (2018), doi: 10.3389/fonc.2018.00215.
  14.  C. Li, W. Chen, and Y. Tan, “Point-Sampling Method Based on 3D U-Net Architecture to Reduce the Influence of False Positive and Solve Boundary Blur Problem in 3D CT Image Segmentation”, Appl. Sci. 10(19), 6838 (2020).
  15.  A. Myronenko and A. Hatamizadeh, “3d kidneys and kidney tumor semantic segmentation using boundary-aware networks”, arXiv preprint arXiv:1909.06684, 2019.
  16.  W. Zhao, D. Jiang, J. P. Queralta, and T. Westerlund, “Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor Segmentation”, arXiv preprint arXiv:2004.08108, 2020.
  17.  W. Zhao, D. Jiang, J. Peña Queralta, and T. Westerlund, “MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net”, Inform. Med. Unlocked 19, 100357 (2020), doi: 10.1016/j.imu.2020.100357.
  18.  Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series”, in The handbook of brain theory and neural networks, pp. 255–258, MIT Press, 1998.
  19.  T. Les, T. Markiewicz, M. Dziekiewicz, and M. Lorent, “Kidney Boundary Detection Algorithm Based on Extended Maxima Transformations for Computed Tomography Diagnosis”, Appl. Sci. 10(21), 7512 (2020), doi: 10.3390/app10217512.
  20.  Z. Swiderska-Chadaj, T. Markiewicz, J. Gallego, G. Bueno, B. Grala, and M. Lorent, “Deep learning for damaged tissue detection and segmentation in Ki-67 brain tumor specimens based on the U-net model”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 849‒856 (2018).
  21.  W. Wieclawek, “3D marker-controlled watershed for kidney segmentation in clinical CT exams”, Biomed. Eng. Online 17(1), 26 (2018), doi: 10.1186/s12938-018-0456-x.
  22.  T. Les, “Patch-based renal CTA image segmentation with U-Net”, in 2020 IEEE 21st International Conference on Computational Problems of Electrical Engineering (CPEE), Poland, 2020, pp. 1‒4, doi: 10.1109/CPEE50798.2020.9238735.
Przejdź do artykułu

Autorzy i Afiliacje

Tomasz Les
1

  1. Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Epilepsy is a neurological disorder that causes seizures of many different types. The article presents an analysis of heart rate variability (HRV) for epileptic seizure prediction. Considering that HRV is nonstationary, our research focused on the quantitative analysis of a Poincare plot feature, i.e. cardiac sympathetic index (CSI). It is reported that the CSI value increases before the epileptic seizure. An algorithm using a 1D-convolutional neural network (1D-CNN) was proposed for CSI estimation. The usability of this method was checked for 40 epilepsy patients. Our algorithm was compared with the method proposed by Toichi et al. The mean squared error (MSE) for testing data was 0.046 and the mean absolute percentage error (MAPE) amounted to 0.097. The 1D-CNN algorithm was also compared with regression methods. For this purpose, a classical type of neural network (MLP), as well as linear regression and SVM regression, were tested. In the study, typical artifacts occurring in ECG signals before and during an epileptic seizure were simulated. The proposed 1D-CNN algorithm estimates CSI well and is resistant to noise and artifacts in the ECG signal.
Przejdź do artykułu

Bibliografia

  1.  World Health Organization (WHO), “Epilepsy”, 2019. Accessed: Jul. 10, 2020. [Online]. Available: https://www.who.int/news-room/ fact-sheets/detail/epilepsy
  2.  B. Sommer et al., “Resection of cerebral gangliogliomas causing drug-resistant epilepsy: short- and long-term outcomes using intraoperative MRI and neuronavigation”, Neurosurg. Focus 38(1), E5 (2015), doi: 10.3171/2014.10.FOCUS14616.
  3.  T. Harnod, C.C.H. Yang, Y.-L. Hsin, P.-J. Wang, K.-R. Shieh, and T.B.J. Kuo, “Heart rate variability in patients with frontal lobe epilepsy”, Seizure 18(1), 21–25 (2009), doi: 10.1016/j.seizure.2008.05.013.
  4.  K. Jansen and L. Lagae, “Cardiac changes in epilepsy”, Seizure 19(8),455–460 (2010), doi: 10.1016/j.seizure.2010.07.008.
  5.  R. Brotherstone and A. McLellan, “Parasympathetic alteration during sub-clinical seizures”, Seizure 21(5), 391–398 (2012), doi: 10.1016/j. seizure.2012.03.011.
  6.  A. Van de Vel et al., “Non-EEG seizure detection systems and potential SUDEP prevention: State of the art: Review and update”, Seizure 41, 141–153 (2016), doi: 10.1016/j.seizure.2016.07.012.
  7.  U.R. Acharya, Y. Hagiwara, and H. Adeli, “Automated seizure prediction”, Epilepsy Behav. 88, 251–261 (2018), doi: 10.1016/j. yebeh.2018.09.030.
  8.  G. Giannakakis, V. Sakkalis, M. Pediaditis, and M. Tsiknakis, “Methods for Seizure Detection and Prediction: An Overview”, in Modern Electroencephalographic Assessment Techniques: Theory and Applications, pp. 131–157, V. Sakkalis, Ed. New York, NY: Springer, 2015.
  9.  E. Bou Assi, D.K. Nguyen, S. Rihana, and M. Sawan, “Towards accurate prediction of epileptic seizures: A review”, Biomed. Signal Process. Control 34, 144–157 (2017), doi: 10.1016/j.bspc.2017.02.001.
  10.  G. Giannakakis, M. Tsiknakis, and P. Vorgia, “Focal epileptic seizures anticipation based on patterns of heart rate variability parameters”, Computer Methods and Programs in Biomedicine 178, 123–133 (2019), doi: 10.1016/j.cmpb.2019.05.032.
  11.  M. Kotas, “Projective filtering of time-aligned beats for foetal ECG extraction”, Bull. Pol. Acad. Sci. Tech. Sci. 55(4), 331‒339 2007.
  12.  K. Lewenstein, M. Jamroży, and T. Leyko, “The use of recurrence plots and beat recordings in chronic heart failure detection”, Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 339–345 (2016).
  13.  J. Jarczewski, A. Furgała, A. Winiarska, M. Kaczmarczyk, and A. Poniatowski, “Cardiovascular response to different types of acute stress stimulations”, Folia Medica Cracoviensia 59(4), 95–110 (2019).
  14.  J. Jeppesen, S. Beniczky, P. Johansen, P. Sidenius, and A. Fuglsang-Frederiksen, “Comparing maximum autonomic activity of psychogenic non-epileptic seizures and epileptic seizures using heart rate variability”, Seizure 37, 13–19 (2016), doi: 10.1016/j.seizure.2016.02.005.
  15.  J. Jeppesen, S. Beniczky, P. Johansen, P. Sidenius, and A. Fuglsang-Frederiksen, “Detection of epileptic seizures with a modified heart rate variability algorithm based on Lorenz plot”, Seizure 24, 1–7 (2015), doi: 10.1016/j.seizure.2014.11.004.
  16.  J. Jeppesen, S. Beniczky, P. Johansen, P. Sidenius, and A. Fuglsang-Frederiksen, “Using Lorenz plot and Cardiac Sympathetic Index of heart rate variability for detecting seizures for patients with epilepsy”, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 4563–4566, doi: 10.1109/EMBC.2014.6944639.
  17.  F. Fürbass, S. Kampusch, E. Kaniusas, J. Koren, S. Pirker, R. Hopfengärtner, H. Stefan, T. Kluge, C. Baumgartner, “Automatic multimodal detection for long-term seizure documentation in epilepsy”, Clinical Neurophysiology 128(8), 1466–1472 (2017), doi: 10.1016/j. clinph.2017.05.013.
  18.  M. Toichi, T. Sugiura, T. Murai, and A. Sengoku, “A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval”, J. Auton. Nerv. Syst. 62(1–2), 79–84 (1997), doi: 10.1016/s0165-1838(96)00112-9.
  19.  J. Pan and W.J. Tompkins, “A Real-Time QRS Detection Algorithm”, IEEE Transactions on Biomedical Engineering BME-32(3), 230–236 (1985), doi: 10.1109/TBME.1985.325532.
  20.  S. Rezaei, S. Moharreri, S. Ghiasi, and S. Parvaneh, “Diagnosis of sleep apnea by evaluating points distribution in poincare plot of RR intervals”, in 2017 Computing in Cardiology (CinC), 2017, pp. 1–4, doi: 10.22489/CinC.2017.158-398.
  21.  S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D Convolutional Neural Networks and Applications: A Survey”, arXiv:1905.03554 [cs, eess], May 2019, Accessed: Jul. 10, 2020. [Online]. Available: http://arxiv.org/abs/1905.03554.
  22.  T. Poggio and Q. Liao, “Theory I: Deep networks and the curse of dimensionality”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 761–773 (2018).
  23.  J. Kurek, B. Świderski, S. Osowski, M. Kruk, and W. Barhoumi, “Deep learning versus classical neural approach to mammogram recognition”, Bull. Pol. Acad. Sci. Tech. Sci. Vol. 66(6), 831‒840 2018, doi: 10.24425/bpas.2018.125930.
  24.  Y. Zhang and Z. Wang, “Research on intelligent algorithm for detecting ECG R waves”, in 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication, 2015, pp. 47–50, doi: 10.1109/ICEIEC.2015.7284484.
  25.  M. Kołodziej, A. Majkowski, P. Tarnowski, R.J. Rak, and A. Rysz, “Implementation of 1DConvolutional Neural Network for Cardiac Sympathetic Index Estimation”, presented at the 2020 IEEE 21st International Conference on Computational Problems of Electrical Engineering (CPEE), 2020.
  26.  K.M. Gaikwad and M.S. Chavan, “Removal of high frequency noise from ECG signal using digital IIR butterworth filter”, in 2014 IEEE Global Conference on Wireless Computing Networking (GCWCN), 2014, pp. 121–124, doi: 10.1109/GCWCN.2014.7030861.
  27.  M. Kołodziej, A. Majkowski, and R.J. Rak, “A new method of feature extraction from EEG signal for brain-computer interface design”, Prz. Elektrotechniczny 9, 35–38 (2010).
  28.  K. Hayase, K. Hayashi, and T. Sawa, “Hierarchical Poincaré analysis for anaesthesia monitoring”, J. Clin. Monit. Comput. 34, 1321–1330 (2020), doi: 10.1007/s10877-019-00447-0.
  29.  J. Niehoff, M. Matzkies, F. Nguemo, J. Hescheler, and M. Reppel, “The Effect of Antiarrhythmic Drugs on the Beat Rate Variability of Human Embryonic and Human Induced Pluripotent Stem Cell Derived Cardiomyocytes”, Sci. Rep. 9(1), 14106 (2019), doi: 10.1038/ s41598-019-50557-7.
  30.  M.M. Platiša, T. Bojić, S. Mazić, and A. Kalauzi, “Generalized Poincaré plots analysis of heart period dynamics in different physiological conditions: Trained vs. untrained men”, PLoS ONE 14(7), e0219281 (2019), doi: 10.1371/journal.pone.0219281.
  31.  P. Fontana, N.R.A. Martins, M. Camenzind, M. Boesch, F. Baty, O.D. Schoch, M.H. Brutsche, R.M. Rossi, and S. Annaheim, “Applicability of a Textile ECG-Belt for Unattended Sleep Apnoea Monitoring in a Home Setting”, Sensors (Basel) 19(15), 3367 (2019), doi: 10.3390/ s19153367.
  32.  T. Schmidt, S. Wulff, K.-M. Braumann, and R. Reer, “Determination of the Maximal Lactate Steady State by HRV in Overweight and Obese Subjects”, Sports Med. Int. Open 3(2), E58–E64 (2019), doi: 10.1055/a-0883-5473.
  33.  J. Piskorski and P. Guzik, “Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adults”, Physiol. Meas. 28(3), 287–300 (2007), doi: 10.1088/0967-3334/28/3/005.
  34.  Ö. Yıldırım, P. Pławiak, R.-S. Tan, and U. R. Acharya, “Arrhythmia detection using deep convolutional neural network with long duration ECG signals”, Computers in Biology and Medicine 102, 411–420, (2018), doi: 10.1016/j.compbiomed.2018.09.009.
  35.  B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for time series classification”, Journal of Systems Engineering and Electronics 28(1), 162–169 (2017), doi: 10.21629/JSEE.2017.01.18.
  36.  V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 799‒810 (2018), doi: 10.24425/BPAS.2018.125927.
  37.  M. Grochowski, A. Kwasigroch, and A. Mikołajczyk, “Selected technical issues of deep neural networks for image classification purposes”, Bull. Pol. Acad. Sci. Tech. Sci. 67(2), 363–376 (2019).
  38.  X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks”, in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011, 315–323, [Online]. Available: http://proceedings.mlr.press/v15/glorot11a.html.
  39.  A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classification with deep convolutional neural networks”, Commun. ACM 60(6), 84–90 (2017), doi: 10.1145/3065386.
  40.  Y. Gal and Z. Ghahramani, “A Theoretically Grounded Application of Dropout in Recurrent Neural Networks”, in Advances in Neural Information Processing Systems 29, pp.1019–1027, Eds. D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, and R. Garnett, Curran Associates, Inc., 2016.
  41.  S. Albawi, T.A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural network”, in 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 1–6, doi: 10.1109/ICEngTechnol.2017.8308186.
Przejdź do artykułu

Autorzy i Afiliacje

Marcin Kołodziej
ORCID: ORCID
Andrzej Majkowski
ORCID: ORCID
Paweł Tarnowski
ORCID: ORCID
Remigiusz Jan Rak
ORCID: ORCID
Andrzej Rysz
ORCID: ORCID
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Voice acoustic analysis can be a valuable and objective tool supporting the diagnosis of many neurodegenerative diseases, especially in times of distant medical examination during the pandemic. The article compares the application of selected signal processing methods and machine learning algorithms for the taxonomy of acquired speech signals representing the vowel a with prolonged phonation in patients with Parkinson’s disease and healthy subjects. The study was conducted using three different feature engineering techniques for the generation of speech signal features as well as the deep learning approach based on the processing of images involving spectrograms of different time and frequency resolutions. The research utilized real recordings acquired in the Department of Neurology at the Medical University of Warsaw, Poland. The discriminatory ability of feature vectors was evaluated using the SVM technique. The spectrograms were processed by the popular AlexNet convolutional neural network adopted to the binary classification task according to the strategy of transfer learning. The results of numerical experiments have shown different efficiencies of the examined approaches; however, the sensitivity of the best test based on the selected features proposed with respect to biological grounds of voice articulation reached the value of 97% with the specificity no worse than 93%. The results could be further slightly improved thanks to the combination of the selected deep learning and feature engineering algorithms in one stacked ensemble model.
Przejdź do artykułu

Bibliografia

  1.  Y.D. Kumar and A.M. Prasad, “MEMS accelerometer system for tremor analysis”, Int. J Adv. Eng. Global Technol. 2(5), 685‒693 (2014).
  2.  P. Pierleoni, “A Smart Inertial System for 24h Monitoring and Classification of Tremor and Freezing of Gait in Parkinson’s Disease”, IEEE Sens. J. 19(23), 11612‒11623 (2019).
  3.  W. Pawlukowska, K. Honczarenko, and M. Gołąb-Janowska, “Nature of speech disorders in Parkinson disease”, Pol. Neurol. Neurosurg. 47(3), 263‒269 (2013), [in Polish].
  4.  S.A. Factor, Parkinson’s Disease: Diagnosis & Clinical Management, 2nd Edition, 2002.
  5.  R. Chiaramonte and M. Bonfiglio, “Acoustic analysis of voice in Parkinson’s disease: a systematic review of voice disability and meta- analysis of studies”, Rev. Neurologia 70(11), 393‒405 (2020).
  6.  Jiri Mekyska, et al., “Robust and complex approach of pathological speech signal analysis”, Neurocomputing 167, 94‒111 (2015).
  7.  B. Erdogdu Sakar, G. Serbes, C. Sakar, “Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease”, PLoS One 12, 8 (2017)
  8.  L. Berus, S. Klancnik, M. Brezocnik, and M. Ficko, “Classifying Parkinson’s Disease Based on Acoustic Measures Using Artificial Neural Networks”, Sensors (Basel) 19(1), 16 (2019).
  9.  L. Jeancolas et al., “Automatic detection of early stages of Parkinson’s disease through acoustic voice analysis with mel-frequency cepstral coefficients”, 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2017, pp. 1‒6.
  10.  D.A. Rahn, M. Chou, J.J. Jiang, and Y.Zhang, “Phonatory impairment in Parkinson’s disease: evidence from nonlinear dynamic analysis and perturbation analysis”, J. Voice 21, 64‒71 (2007).
  11.  J. Kurek, B. Świderski, S. Osowski, M. Kruk, and W. Barhoumi, “Deep learning versus classical neural approach to mammogram recognition”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 831‒840 (2018).
  12.  S. Sivaranjini and C.M. Sujatha, “Deep learning based diagnosis of Parkinson’s disease using convolutional neural network”, Multimed. Tools Appl. 79, 15467–15479 (2020).
  13.  M. Wodziński, A. Skalski, D. Hemmerling, J.R. Orozco-Arroyave, and E. Noth, “Deep Learning Approach to Parkinson’s Disease Detection Using Voice Recordings and Convolutional Neural Network Dedicated to Image Classification” 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 717‒720.
  14.  J. Chmielińska, K. Białek, A. Potulska-Chromik, J. Jakubowski, E. Majda-Zdancewicz, M. Nojszewska, A. Kostera-Pruszczyk and A. Dobrowolski, “Multimodal data acquisition set for objective assessment of Parkinson’s disease”, Proc. SPIE 11442, Radioelectronic Systems Conference 2019, 114420F (2020).
  15.  M. Kuhn, K. Johnson, Applied predictive modeling, New York: Springer, 2013.
  16.  P. Liang, C. Deng, J. Wu, Z. Yang, and J. Zhu, “Intelligent Fault Diagnosis of Rolling Element Bearing Based on Convolutional Neural Network and Frequency Spectrograms” 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, USA, 2019, pp. 1‒5.
  17.  M.S. Wibawa, I.M.D. Maysanjaya, N.K.D.P. Novianti, and P.N. Crisnapati, “Abnormal Heart Rhythm Detection Based on Spectrogram of Heart Sound using Convolutional Neural Network”, 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia, 2019, pp. 1‒4.
  18.  M. Curilem, J.P. Canário, L. Franco, and R.A. Rios, “Using CNN To Classify Spectrograms of Seismic Events From Llaima Volcano (Chile)”, 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brasil, 2018, pp. 1‒8.
  19.  D. Rethage, J. Pons and X. Serra, “A Wavenet for Speech Denoising”, 2018 IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018, pp. 5069‒5073.
  20.  A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classifi-cation with deep convolutional neural networks”, Neural Infor-mation Processing Systems, 2012.
  21.  J. Jakubowski and J. Chmielińska, “Detection of driver fatigue symptoms using transfer learning”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 869‒874 (2018).
  22.  A. Benba, A. Jilbab, and A. Hammouch, “Voice analysis for detecting persons with Parkinson’s disease using MFCC and VQ”, International conference on circuits, systems and signal processing (ICCSSP’14), Russia, 2014.
  23.  E. Niebudek-Bogusz, J. Grygiel, P. Strumiłło, and M. Śliwińska-Kowalska, “Nonlinear acoustic analysis in the evaluation of occupational voice disorders”, Occupational Medicine, 64(1), 29–35 (2013), [in Polish].
  24.  E. Majda and A.P. Dobrowolski, “Modeling and optimization of the feature generator for speaker recognition systems”, Electr. Rev. 88(12A), 131‒136 (2012).
  25.  Y. Maryn, N. Roy, M. De Bodt, P.B. van Cauwenberge, P. Corthals, “Acoustic measurement of overall voice quality: a meta-analysis”, J. Acoust. Soc. Am. 126(5), 2619‒2634 (2009), doi: 10.1121/1.3224706.
  26.  E. Niebudek-Bogusz, J. Grygiel, P. Strumiłło, and M. Śliwińska-Kowalska, “Mel cepstral analysis of voice in patients with vocal nodules”, Otorhinolaryngology 10(4), 176‒181 (2011), [in Polish].
  27.  A. Krysiak, “Language, speech and communication disorders in Parkinson’s disease”, Neuropsychiatr. Neuropsychol. 6(1), 36–42 (2011), [in Polish].
  28.  F. Alías, J.C. Socoró, and X. Sevillano, “A Review of Physical and Perceptual Feature Extraction Techniques for Speech, Music and Environmental Sounds”, Appl. Sci. 6(5), 143 (2016).
  29.  X. Valero and F. Alias, “Gammatone Cepstral Coefficients: Biologically InspiredFeatures for Non-Speech Audio Classification”, IEEE Trans. Multimedia 14(6), 1684‒1689 (2012).
  30.  S. Malcolm, “An Efficient Implementation of the Patterson-Holdworth Auditory Filter Bank”, 35. Apple Computer Technical Report, 1993.
  31.  D.M. Agrawal, H.B. Sailor, M.H. Soni, and H.A. Patil, “Novel TEO-based gammatone features for environmental sound classification”, 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 2017, pp. 1809‒1813.
  32.  S. Russel and P. Norvig, Artificial intelligence – a modern approach, Upper Saddle River: Pearson Education, 2010.
  33.  A. Chatzimparmpas, R.M. Martins, K. Kucher, and A. Kerren, “StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics”, IEEE Transactions on Visualization and Computer Graphics 27(2), 1547‒1557 (2021), doi: 10.1109/TVCG.2020.3030352.
Przejdź do artykułu

Autorzy i Afiliacje

Ewelina Majda-Zdancewicz
1
ORCID: ORCID
Anna Potulska-Chromik
2
ORCID: ORCID
Jacek Jakubowski
1
ORCID: ORCID
Monika Nojszewska
2
ORCID: ORCID
Anna Kostera-Pruszczyk
2
ORCID: ORCID

  1. Faculty of Electronics, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  2. Department of Neurology, Medical University of Warsaw, ul. Banacha 1a, 02-097 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents the fusion approach of different feature selection methods in pattern recognition problems. The following methods are examined: nearest component analysis, Fisher discriminant criterion, refiefF method, stepwise fit, Kolmogorov-Smirnov criteria, T2-test, Kruskall-Wallis test, feature correlation with class, and SVM recursive feature elimination. The sensitivity to the noisy data as well as the repeatability of the most important features are studied. Based on this study, the best selection methods are chosen and applied in the process of selection of the most important genes and gene sequences in a dataset of gene expression microarray in prostate and ovarian cancers. The results of their fusion are presented and discussed. The small selected set of such genes can be treated as biomarkers of cancer.
Przejdź do artykułu

Bibliografia

  1.  I. Guyon and A. Elisseeff, “An introduction to variable and feature selection”, J. Mach. Learn. Res. 3, 1158–1182 (2003).
  2.  I. Guyon, A.J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification using SVM”, Mach. Learn. 46, 389‒422 (2003).
  3.  P.N. Tan, M. Steinbach, and V Kumar, Introduction to data mining, Boston, Pearson Education Inc., 2006.
  4.  H. Chen, Y. Zhang, and I. Gutman, “A kernel-based clustering method for gene selection with gene expression data”, J. Biomed. Inf orm. 62, 12‒20 (2016).
  5.  P. Das, A. Roychowdhury, S. Das, S. Roychoudhury, and S. Tripathy, “sigFeature: novel significant feature selection method for classification of gene expression data using support vector machine and t statistic”, Front. Genet. 11, 247 (2020), doi: 10.3389/fgene.2020.00247.
  6.  A. Wiliński and S. Osowski, “Ensemble of data mining methods for gene ranking”, Bull. Pol. Acad. Sci. Tech. Sci. 60, 461‒471 (2012).
  7.  H. Mitsubayashi, S. Aso, T. Nagashima, and Y. Okada, “Accurate and robust gene selection for disease classification using simple statistics, Biomed. Inf orm. 391, 68–71 (2008).
  8.  J. Xu, Y. Wang, K. Xu, and T. Zhang, “Feature genes selection using fuzzy rough uncertainty metric for tumour diagnosis”, Comput. Math. Method Med. 2019, 6705648 (2019), doi: 10.1155/2019/6705648.
  9.  B. Lyu and A. Haque, “Deep learning based tumour type classification using gene expression data”, bioRxiv, p. 364323 (2018), doi: 10.1101/364323.
  10.  F. Yang, “Robust feature selection for microarray data based on multi criterion fusion”, IEEE Trans. Comput. Biol. Bioinf . 8(4), 1080–1092 (2011).
  11.  M. Muszyński and S. Osowski, “Data mining methods for gene selection on the basis of gene expression arrays”, Int. J. .Appl. Math. Comput. Sci. 24(3), 657‒668 (2014).
  12.  T. Latkowski and S. Osowski, “Data mining for feature selection in gene expression autism data”, Expert Syst. Appl. 42(2), 864‒872 (2015).
  13.  Matlab user manual. Natick (USA): MathWorks: (2020).
  14.  P. Sprent, and N.C. Smeeton, Applied Nonparametric Statistical Methods. Boca Raton, Chapman & Hall/CRC, 2007.
  15.  R.O. Duda, P.E. Hart, and P. Stork, Pattern Classif ication and Scene Analysis, New York: Wiley, 2003.
  16.  Exxact. [Online]. https://blog.exxactcorp.com/scikitlearn-vs-mlr-for-machine-learning/
  17.  Tutorialspoint. [Online]. https://www.tutorialspoint.com/weka/weka_feature_selection.htm
  18.  R. Robnik-Sikonja, and I. Kononenko, “Theoretical and empirical analysis of Relief ”, Mach. Learn. 53, 23‒69 (2003).
  19.  W. Yang, K. Wang, and W. Zuo. “Neighborhood Component Feature Selection for High-Dimensional Data”, J. Comput. 7(1), 161‒168 (2012).
  20.  L. Breiman, “Random forests”, Mach. Learn. 45, 5–32 (2001).
  21.  NCBI database. [Online]. http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4431, (2011).
  22. http://discover1.mc.vanderbilt.edu/discover/public/mcsvm/
  23. http://sdmc.lit.org.sg/GEDatasets/Datasets.html
  24.  F. Gil and S. Osowski, “Feature selection methods in gene recognition problem”, in Proc. on-line Conf erence Computatational Methods in Electrical Engineering, 2020, pp. 1‒4.
Przejdź do artykułu

Autorzy i Afiliacje

Fabian Gil
1
Stanislaw Osowski
1 2
ORCID: ORCID

  1. Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
  2. Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article presents research on the use of Monte-Carlo Tree Search (MCTS) methods to create an artificial player for the popular card game “The Lord of the Rings”. The game is characterized by complicated rules, multi-stage round construction, and a high level of randomness. The described study found that the best probability of a win is received for a strategy combining expert knowledge-based agents with MCTS agents at different decision stages. It is also beneficial to replace random playouts with playouts using expert knowledge. The results of the final experiments indicate that the relative effectiveness of the developed solution grows as the difficulty of the game increases.
Przejdź do artykułu

Bibliografia

  1.  C. Browne, “A survey of monte carlo tree search methods”, IEEE Trans. Comput. Intell. AI Games 4., 1–43 (2012).
  2.  R. Bjarnason, A. Fern, and P. Tadepalli, “Lower bounding Klondike solitaire with Monte-Carlo planning”, Nineteenth International Conference on Automated Planning and Scheduling, 2009.
  3.  M. Świechowski, T. Tajmajer, and A. Janusz, “Improving hearthstone ai by combining mcts and supervised learning algo rithms”, 2018 IEEE Conference on Computational Intelligence and Games (CIG), 2018.
  4.  J. Mańdziuk, “MCTS/UCT in Solving Real-Life Problems”, Advances in Data Analysis with Computational Intelligence Methods, 277‒292, Springer, Cham, 2018.
  5.  S. Kajita, T. Kinjo, and T. Nishi, “Autonomous molecular design by Monte-Carlo tree search and rapid evaluations using molecular dynamics simulations”, Commun. Phys. 3(1), 1‒11 (2020).
  6.  S. Haeri and L. Trajković, “Virtual network embedding via Monte Carlo tree search”, IEEE Trans. Cybern. 48(2), 510‒521 (2017).
  7.  G. Best, O.M. Cliff, T. Patten, R.R. Mettu, and R. Fitch, “Decentralised Monte Carlo tree search for active perception”, Algorithmic Foundations of Robotics XII, 864‒879, Springer, Cham, 2020.
  8.  D.A. Dhar, P. Morawiecki, and S. Wójtowicz. “Finding differential paths in arx ciphers through nested monte-carlo search”, AEU Int. J. Electron. Commun 64(2), 147‒150 (2018).
  9.  K. Guzek and P. Napieralski, “Measurement of noise in the Monte Carlo point sampling method”, Bull. Pol. Acad. Sci. Tech. Sci. 59(1), 15‒19 (2011).
  10.  D. Tefelski, T. Piotrowski, A. Polański, J. Skubalski and V. Blideanu, “Monte-Carlo aided design of neutron shielding concretes”, Bull. Pol. Acad. Sci. Tech. Sci. 61(1), 161‒171 (2013).
  11.  C.D. Ward and P.I. Cowling, “Monte Carlo search applied to card selection in Magic: The Gathering”, IEEE Symposium on Computational Intelligence and Games, 2009.
  12.  P.I. Cowling, C.D. Ward, and E.J. Powley, “Ensemble determinization in monte carlo tree search for the imperfect information card game magic: The gathering”, IEEE Trans. Comput. Intell. AI Games 4(4), 241‒257 (2012).
  13.  S. Turkay, S. Adinolf, and D. Tirthali, “Collectible Card Games as Learning Tools”, Procedia – Soc. Behav. Sci. 46, 3701‒3705 (2012), doi: 10.1016/j.sbspro.2012.06.130.
  14.  K. Bochennek, B. Wittekindt, S.-Y. Zimmermann, and T. Klingebiel, “More than mere games: a review of card and board games for medical education”, Med. Teach. 29(9), 941‒948 (2007), doi: 10.1080/01421590701749813.
  15.  J.S.B. Choe and J. Kim, “Enhancing Monte Carlo Tree Search for Playing Hearthstone”, 2019 IEEE Conference on Games (CoG), London, United Kingdom, 2019, pp. 1‒7.
  16.  K. Godlewski and B. Sawicki, “MCTS Based Agents for Multistage Single-Player Card Game”, 21st International Conference on Computational Problems of Electrical Engineering (CPEE), 2020
  17.  “Magic: The Gathering”, [online] https://magic.wizards.com/en
  18.  E.J. Powley, P.I. Cowling, and D. Whitehouse. “Information capture and reuse strategies in Monte Carlo Tree Search, with applications to games of hidden information”, Artif. Intell. 217, 92‒116 (2014).
  19.  Fantasy Flight Publishing, “Hall of Beorn”, technical documentation, 2020 [Online] Available: http://hallofbeorn.com/LotR/Scenarios/ Passage-Through-Mirkwood
  20.  S. Zhang and M. Buro, “Improving hearthstone AI by learning high-level rollout policies and bucketing chance node events”, 2017 IEEE Conference on Computational Intelligence and Games (CIG), New York, USA, 2017, pp. 309‒316.
  21.  G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van Den Herik, “Parallel monte-carlo tree search”, International Conference on Computers and Games, Springer, Berlin, Heidelberg, 2008.
  22.  A. Fern and P. Lewis, “Ensemble monte-carlo planning: An empirical study”, Twenty-First International Conference on Automated Planning and Scheduling, ICAPS 2011, Germany, 2011.
  23.  A. Santos, P. A. Santos, and F.S. Melo, “Monte Carlo tree search experiments in hearthstone,” 2017 IEEE Conference on Computational Intelligence and Games (CIG), New York, USA, 2017, pp. 272‒279.
Przejdź do artykułu

Autorzy i Afiliacje

Konrad Godlewski
1
Bartosz Sawicki
1
ORCID: ORCID

  1. Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Due to the coexistence of continuity and discreteness, energy management of a multi-mode power split hybrid electric vehicle (HEV) can be considered a typical hybrid system. Therefore, the hybrid system theory is applied to investigate the optimum energy distribution strategy of a power split multi-mode HEV. In order to obtain a unified description of the continuous/discrete dynamics, including both the steady power distribution process and mode switching behaviors, mixed logical dynamical (MLD) modeling is adopted to build the control-oriented model. Moreover, linear piecewise affine (PWA) technology is applied to deal with nonlinear characteristics in MLD modeling. The MLD model is finally obtained through a high level modeling language, i.e. HYSDEL. Based on the MLD model, hybrid model predictive control (HMPC) strategy is proposed, where a mixed integer quadratic programming (MIQP) problem is constructed for optimum power distribution. Simulation studies under different driving cycles demonstrate that the proposed control strategy can have a superior control effect as compared with the rule-based control strategy.
Przejdź do artykułu

Bibliografia

  1.  J.J. Hu, B. Mei, H. Peng, and X.Y. Jiang, “Optimization design and analysis for a single motor hybrid powertrain configuration with dual planetary gears”, Appl. Sci. 9(4), 707 (2019).
  2.  S.H. Wang, S. Zhang, D.H. Shi, X.Q. Sun, and J.Q. He, “Research on instantaneous optimal control of the hybrid electric vehicle with planetary gear sets”, J. Braz. Soc. Mech. Sci. Eng. 41(1), 51 (2019).
  3.  J. Kim, J. Kang, Y. Kim, T. Kim, B. Min, and H. Kim, “Design of power split transmission: design of dual mode power split transmission”, Int. J. Automot. Technol. 11(4), 565‒571 (2010).
  4.  F. Wang, J. Zhang, X. Xu, Y.F. Cai, Z.G. Zhou, and X.Q. Sun, “New method for power allocation of multi-power sources considering speed-up transient vibration of planetary power-split HEVs driveline system”, Mech. Syst. Sig. Process. 128, 1‒18 (2019).
  5.  J.M. Miller, “Hybrid electric vehicle propulsion system architectures of the E-CVT type”, IEEE Trans. Power Electron. 21(3), 756‒767 (2006).
  6.  D.H. Shi, S.H. Wang, P. Pisu, L. Chen, R.C. Wang, and R.G. Wang, “Modeling and optimal energy management of a power split hybrid electric vehicle”, Sci. China Technol. Sci. 60(5), 1‒13 (2017).
  7.  J.D. Wishart, L. Zhou, and Z. Dong, “Review, modelling and simulation of two-mode hybrid vehicle architecture”, Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Nevada, USA, 2007, pp. 1091‒1112.
  8.  L. Chen, F.T. Zhu, M.M. Zhang, Y. Huo, C.L. Yin, and H. Peng, “Design and analysis of an electrical variable transmission for a series– parallel hybrid electric vehicle”, IEEE Trans. Veh. Technol. 60(5), 2354‒2363 (2011).
  9.  P. Aishwarya and O.B. Hari, “A review of optimal energy management strategies for hybrid electric vehicle”, Int. J. Veh. Tech. 160510 (2014).
  10.  B.L.C. Cezar and O. Alexandru, “A dynamic programming control strategy for HEV”, Appl. Mech. Mater. 263, 541‒544 (2013).
  11.  J. Park, “Development of equivalent fuel consumption minimization strategy for hybrid electric vehicles”, Int. J. Automot. Technol. 13(5), 835‒843 (2012).
  12.  D.H. Shi, P. Pisu, and L. Chen, “Control design and fuel economy investigation of power split HEV with energy regeneration of suspension”, Appl. Energy. 182, 576‒589 (2016).
  13.  T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller”, Bull. Pol. Acad. Sci. Tech. Sci. 66(1), 49‒58 (2018).
  14.  H. Borhan, A. Vahidi, A.M. Phillips, M.L. Kuang, I.V. Kolmanovsky, and S.D. Cairano, “MPC-based energy management of a power-split hybrid electric vehicle”, IEEE Trans. Control Syst. Technol. 20(3), 593‒603 (2012).
  15.  A. Babiarz, A. Czornik, J. Klamka, and M. Niezabitowski, “The selected problems of controllability of discrete-time switched linear systems with constrained switching rule”, Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 657‒666 (2015).
  16. [6]  S.G. Olsen and G.M. Bone, “Model-based control of three degrees of freedom robotic bulldozing”, J. Dyn. Syst. Meas. Control. 136(136), 729‒736 (2014).
  17.  X.Q. Sun, Y.F. Cai, S.H. Wang, X. Xu, and L. Chen, “Optimal control of intelligent vehicle longitudinal dynamics via hybrid model predictive control”, Rob. Auton. Syst. 112, 190‒200 (2019).
  18.  S.G. Olsen and G.M. Bone, “Development of a hybrid dynamic model and experimental identification of robotic bulldozing”, J. Dyn. Syst. Meas. Control. 135(2), 450‒472 (2013).
  19.  F.T. Zhu, L. Chen, and C.L. Yin, “Design and analysis of a novel multimode transmission for a hev using a single electric machine”, IEEE Trans. Veh. Technol. 62(3), 1097‒1110 (2013).
  20.  R.J. Zhang and Y.B. Chen, “Control of hybrid dynamical systems for electric vehicles”, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), Arlington, VA, USA, 2001, pp. 2884‒2889.
  21.  J. Lygeros, S. Sastry, and C. Tomlin, Hybrid Systems: foundations, advanced topics and applications, University of California, Berkeley, 2012.
  22.  X.Q. Sun, Y.F. Cai, S.H. Wang, X.Xu, and L. Chen, “Piecewise affine identification of tire longitudinal properties for autonomous driving control based on data-driven”, IEEE Access 6, 47424‒47432 (2018).
  23.  A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A bounded-error approach to piecewise affine system identification”, IEEE Trans. Autom. Control. 50(10), 1567‒1580 (2005).
  24.  G. Ferrari-Trecate, M. Muselli, and D. Liberati, “A clustering technique for the identification of piecewise affine systems”, Automatica. 39(2), 205‒217 (2003).
  25.  F.D. Torrisi and A. Bemporad, “Hysdel-a tool for generating computational hybrid models for analysis and synthesis problems”, IEEE Trans. Control Syst. Technol. 12(2), 235‒249 (2004).
  26.  M. Abdullah and M. Idres, “Constrained model predictive control of proton exchange membrane fuel cell”, J. Mech. Sci. Technol. 28(9), 3855‒3862 (2014).
  27.  D. Jolevski and O. Bego, “Model predictive control of gantry/bridge crane with anti-sway algorithm”, J. Mech. Sci. Technol. 29(2), 827‒834 (2015).
  28.  G. Ripaccioli, A. Bemporad, F. Assadian, C. Dextreit, S.D. Cairano, and I.V. Kolmanovsky, “Hybrid modeling, identification, and predictive control: An application to hybrid electric vehicle energy management”, International conference on hybrid systems computation and control(HSCC), San Francisco, CA, USA, 2009, pp. 321‒335.
  29.  A. Bemporad and D. Mignone, “Miqp.m: a matlab function for solving mixed integer quadratic programs version 1.02 user guide”, ETH–Swiss Federal Institute of Technology, ETHZ–ETL, (2000).
  30.  M. Tutuianu et al., “Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation”, Transp. Res. Part D Transp. Environ. 40, 61‒75 (2015).
  31.  N. Kim, S.W. Cha, and H. Peng, “Optimal equivalent fuel consumption for hybrid electric vehicles”, IEEE Trans. Control Syst. Technol. 20(3), 817‒825 (2011).
Przejdź do artykułu

Autorzy i Afiliacje

Shaohua Wang
1
Sheng Zhang
1
Dehua Shi
1 2 3
Xiaoqiang Sun
1
Tao Yang
3
ORCID: ORCID

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
  2. Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
  3. Jiangsu Chunlan Clean Energy Research Institute Co., Ltd., Taizhou 225300, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Real time simulators of IEC 61850 compliant protection devices can be implemented without their analogue part, reducing costs and increasing versatility. Implementation of Sampled Values (SV) and GOOSE interfaces to Matlab/Simulink allows for interaction with protection relays in closed loop during power system simulation. Properly configured and synchronized Linux system with Real Time (RT) patch, can be used as a low latency run time environment for Matlab/Simulink generated model. The number of overruns during model execution using proposed SV and GOOSE interfaces with 50 µs step size is minimal. The paper discusses the implementation details and time synchronization methods of IEC 61850 real time simulator implemented in Matlab/Simulink that is built on top of run time environment shown in authors preliminary works and is the further development of them. Correct operation of the proposed solution is evaluated during the hardware-in-the-loop testing of ABB REL670 relay.
Przejdź do artykułu

Bibliografia

  1.  M.D.O. Faruque et al., “Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis,” IEEE Power Energy Technol. Syst. J. 2(2), 63–73 (2015).
  2.  S. Piróg, R. Stala, and Ł. Stawiarski, “Power electronic converter for photovoltaic systems with the use of FPGA-based real-time modeling of single phase grid-connected systems,” Bull. Pol. Acad. Sci. Tech. Sci. 57(4), 345–354 (2009).
  3.  C. Yang, Y. Xue, X. Zhang, Y. Zhang, and Y. Chen, “Real-Time FPGA-RTDS Co-Simulator for Power Systems,” IEEE Access 6, 44917– 44926 (2018)
  4.  M. Matar and R. Iravani, “The Reconfigurable-Hardware Real-Time and Faster-Than-Real-Time Simulator for the Analysis of Electromagnetic Transients in Power Systems,” IEEE Trans. Power Deliv. 28(2), 619–627 (2013).
  5.  M.E. Hernandez, G.A. Ramos, M. Lwin, P. Siratarnsophon, and S. Santoso, “Embedded Real-Time Simulation Platform for Power Distribution Systems,” IEEE Access 6, 6243–6256 (2018).
  6.  D.A.M. Montaña, D.F.C. Rodriguez, D.I.C. Rey, and G. Ramos, “Hardware and Software Integration as a Realist SCADA Environment to Test Protective Relaying Control,” IEEE Trans. Indust. Appl. 54(2), 1208–1217 (2018).
  7.  C. Dufour and J. Bélanger, “On the Use of Real-Time Simulation Technology in Smart Grid Research and Development”, IEEE Trans. Indust. Appl. 50(6), 3963–3970 (2014).
  8.  M. Shoaib and L. Vanfretti, “Performance evaluation of protection functions for IEC 61850-9-2 process bus using real-time hardware- in-the-loop simulation approach,” in 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 1–4.
  9.  M.S. Almas, R. Leelaruji, and L. Vanfretti, “Over-current relay model implementation for real time simulation amp; Hardware-in-the-Loop (HIL) validation,” in IECON 2012 – 38th Annual Conference on IEEE Industrial Electronics Society, 2012, pp. 4789–4796.
  10.  D.R. Gurusinghe, S. Kariyawasam, and D.S. Ouellette, “Testing of IEC 61850 sampled values based digital substation automation systems,” J. Eng. 2018(15), 807–811 (2018).
  11.  Y. Wu, N. Honeth, L. Nordström, and Z. Shi, “Software MU based IED functional test platform”, 2015 IEEE Power Energy Society General Meeting, 2015, pp. 1–5.
  12.  N. Honeth, Z.A. Khurram, P. Zhao, and L. Nordström, “Development of the IEC 61850-9-2 software merging unit IED test and training platform,” in 2013 IEEE Grenoble Conference, 2013, pp. 1–6.
  13.  M. Sojka, “On generating Linux applications from Simulink.” [Online]. Available: https://rtime.felk.cvut.cz/~sojka/blog/on-generating- linux-applications-from-simulink/
  14.  K. Kurek, M. Januszewski, R. Kowalik, and Ł. Nogal, “Implementation of IEC 61850 Power Protection Tester in Linux Environment”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 689‒696 (2020)
Przejdź do artykułu

Autorzy i Afiliacje

Karol Kurek
1
ORCID: ORCID
Łukasz Nogal
1
ORCID: ORCID
Ryszard Kowalik
1
Marcin Januszewski
1

  1. Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Outdoor lighting is an important element in creating an evening and nocturnal image of urban spaces. Properly designed and constructed lighting installations provide residents with comfort and security. One way to improve the energy efficiency of road lighting installation is to replace the electromagnetic control gear (ECG) with electronic ballasts (EB). The main purpose of this article is to provide an in-depth comparative analysis of the energy efficiency and performance of HPS lamps with ECG and EB. It will compare their performance under sinusoidal and nonsinusoidal voltage supply conditions for the four most commonly used HPS lamps of 70 W, 100 W, 150 W, and 250 W. The number of luminaires supplied from one circuit was determined based on the value of permissible active power losses. With the use of the DIALux program, projects of road lighting installation were developed. On this basis, energy performance indicators, electricity consumption, electricity costs, and CO 2 emissions were calculated for one-phase and three-phase installations. The obtained results indicate that an HPS lamp with EB is better than an HPS lamp with ECG in terms of energy quality, energy savings, and environmental impact. The results of this analysis are expected to assist in the choice of HPS lighting technology.
Przejdź do artykułu

Bibliografia

  1.  A. Mayeur, R. Bremond, and J.M.Ch. Bastien, “The effect of the driving activity on target detection as a function of the visibility level: implications for road lighting”, Transp. Res. 13(2), 115‒128 (2010).
  2.  Ch. Boomsma and L. Steg, “The effect of information and values on acceptability of reduced street lighting“, J. Environ. Psychol. 39, 22‒31 (2014).
  3.  A. Pena-Garcia, A. Hurtado, and M.C. Aguilar-Luzon, “Impact of public lighting on pedestrians’ perception of safety and well-being”, Saf. Sci. 78, 142‒148 (2015).
  4.  J.D. Bullough, E.T. Donnell, and M.S. Rea, “To illuminate or not to illuminate: roadway lighting as it affects traffic safety at intersections”, Accid. Anal. Prev. 53, 65‒77 (2013).
  5.  A. Jafari-Anarkooli and M. Hadji Hosseinlou, “Analysis of the injury severity of crashes by considering different lighting conditions on two-lane rural roads”, J. Saf. Res. 56, 57‒65 (2016).
  6.  M. Jackett and W. Frith, “Quantifying the impact of road lighting on road safety-a New Zealand study”, IATSS Res. 36, 139‒145 (2013).
  7.  K. Kircher and Ch. Ahlstrom, “The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers”, Accid. Anal. Prev. 47, 153‒161 (2012).
  8.  M. Kostic and L. Djokic, “Recommendation for energy efficient and visually acceptable street lighting”, Energy 34, 1565–1572 (2009).
  9.  D. Campisi, S. Gitto, and D. Morea, “Economic feasibility of energy improvements in street lighting systems in Rome”, J. Clean. Prod. 175, 190‒198 (2018).
  10.  S. Yoomak and A. Ngaopitakkul, “Optimisation of quality and energy efficiency of LED luminaires in roadway lighting systems on different road surfaces”, Sustain. Cities Soc. 38, 333‒347 (2018).
  11.  F. Lecce, G. Salvadoni, and M. Rocca, “Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy”, Energy 138, 616‒628 (2017).
  12.  M. Beccali, M. Bonomolo, F. Leccese, D. Lista,, and G. Salvadoni, “On the impact of safety requirements , energy prices and investment costs in street lighting refurbishment design”, Energy 165, 739–759 (2018).
  13.  P. Pracki, A. Wiśniewski, D. Czyżewski, R. Krupiński, K. Skarżyński, M. Wesołowski, and A. Czaplicki, “Strategies influencing energy efficiency of lighting solutions”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 711‒719 (2020).
  14.  P.R. Boyce, S. Fotios, and M. Richards, “Road lighting and energy savings”, Lighting Res. Technol. 41, 245‒260 (2009).
  15.  C.C.M. Kyba, A. Hänel, and F. Hölker, “Redefining efficiency for outdoor lighting”, Energy Environ. Sci. 7, 1806‒1814 (2014).
  16.  M. Beccali, M. Bonomolo, G. Ciulla, A. Galatioto, and V. Lo Brano, “Improvement of energy efficiency and quality of street light-ing in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)”, Energy 92(3), 394‒408 (2015).
  17.  A. Wiśniewski, “Calculations of energy savings using lighting control systems ”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 809‒817 (2020).
  18.  M. IndraalIrsyad and N. Rabindra, “A survey based approach to estimating the benefits of energy efficiency improvements in street lighting systems in Indonesia”, Renew. Sust. Energ. Rev. 58, 1569–1577 (2016).
  19.  S. Pizzuti, M. Annunziato, and F. Moretti, “Smart street lighting management”, Energy Effic. 6, 607–616 (2013).
  20.  D. Radulovic, S. Skok, and V. Kirincic, “Energy Effic. public lighting management in the cities”, Energy 36, 1908–1915 (2011).
  21.  A. Djuretic and M. Kostic, “Comparison of electronic and conventional ballasts used in roadway lighting”, Light. Res. Technol. 46, 407–420 (2014).
  22.  S. Yoomak, Ch. Jettansen, and S. Ngaopitakkul Bunjongjit, “Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system”, Energy Build. 159, 542‒557 (2018).
  23.  M.H. Omar, H. Abdul Rahman, M.S. Majid, M.Y. Hassan, and N. Rosmin, “The reduction of total harmonic distortion and electromagnetic interference in high pressure sodium street lighting using single stage electronic ballast”, IEEE International Power Engineering and Optimization Conference (PEOCO) 2012, pp. 230‒235.
  24.  A.A. Mansour and O.A. Arafa, “Comparative study of 250 W high pressure sodium lamp operating from both conventional and electronic ballast”, J. Electr. Syst. Inf. Technol. 1, 234‒254 (2014).
  25.  W. Nsibi, M. Nehdi, A.J. Chammam, A. Sellami, and G. Zissis, “Dimmable electronic ballast for HPS lamp operating in LF”, 7th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 2016, pp. 1‒4.
  26.  M.N. Nehdi, W. Nsibi, A. Chammam, A. Sellami, and G. Zissis, “Frequency dimmable electronic ballast for a 250W HPS lamp”, 7th International Renewable Energy Congress (IREC), Hammamet, 2016, pp. 1‒3.
  27.  R. Sikora and P. Markiewicz, “Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast”, Energies, 13(11), 2909 (2020), doi: 10.3390/en13112909.
  28.  F.B. dos Reis, J. Cesar Marques de Lima, and F.S. dos Reis, “Development of a flexible public lighting system”, 39th Annual Conference of the Industrial Electronics Society (IECON), 2013, pp. 6046‒6051.
  29.  A. Gil-De-Castro, A. Moreno-Munoz, and J.J.G. De La Rosa, “Comparative study of electromagnetic and electronic ballasts – an assessment on harmonic emission”, Electr. Rev.-Prz. Elektrotechniczny 88(2), 288‒294 (2012).
  30.  H. Shu-Hung Chung, N.M. Ho, W. Yan, P. Wai Tam, and S.Y. Hui, “Comparison of Dimmable Electromagnetic and Electronic Ballast Systems—An Assessmenton Energy Effic. and Lifetime”, IEEE Trans. Ind. Electron. 54, 3145‒3154 (2007).
  31.  M.H. Omar, H.A. Rahman, M.S. Majid, N. Rosmin, M.Y. Hassan, and W.Z. Wan Omar, “Design and simulation of electronic ballast performance for high pressure sodium street lighting”, Light. Res. Technol. 45, 729–739 (2013).
  32.  S. Hossein-Hosseini, M. Sabahi, and A. Yazdanpanah-Goharrizi, “An improved topology of electronic ballast with wide dimming range,PFC and low switching losses using PWM-controlled soft-switching inwerter”, Electr. Power Syst. Res. 78, 975–984 (2008).
  33.  A. Burgio and D. Menniti, “A novel technique for energy savings by dimming high pressure sodium lamps mounted with magnetic ballasts using a centralized system”, Electr. Power Syst. Res. 96, 16‒22 (2013).
  34.  K. Hyodhyad and K. Supanaroj, “Energy saving project for street lighting of Provincial Electricity Authority (PEA)”, 2nd Joint International Conference on Sustainable Energy and Environment (SEE2006), 2006, pp. 1‒6.
  35.  W. Yan, S.Y.R. Hui, and S.H. Chung, “Energy saving of large-scale high-intensity -discharge lamp lighting networks using a central reactive power control system”, IEEE Trans. Ind. Electron. 50, 3069‒3078 (2009).
  36.  M. Catelani and L. Ciani, “Experimental tests and reliability assessment of electronic ballast system”, Microelectron. Reliab. 52, 1833–1836 (2012).
  37.  J. Molina, L. Sainz, J.J. Mesas, and J.G. Bergas, “Model of discharge lamps with magnetic ballast”, Electr. Power Syst. Res. 95, 112‒120 (2013).
  38.  C.B. Viejo, J.C.A. Anton, A. Robles, F.F. Martin, J.C. Viera, S. Bhosle, and G. Zissis, “Comparison between different discharge lamp models based on lamp dynamic conductance”, IEEE Trans. Ind. Electron. 47, 1983‒1991 (2011).
  39.  J. Mesasa, L. Sainza, and A. Ferrerb, “Deterministic and stochastic assessment of the harmonic currents consumed by discharge lamps”, Electr. Power Syst. Res. 81, 10–18 (2011).
  40.  I. Azcarate, J.J. Gutierrez, A. Lazkano, P. Saiz, K. Redondo, and L.A. Leturiondo, “Experimental study of the response of efficient lighting technologies to complex voltage fluctuations”, Electr. Power Energy Syst. 63, 499–506 (2014).
  41.  A. Dolara, R. Faranda, S. Guzzetti, and S. Leva, “Power Quality in Public Lighting Systems”, Proceedings of the 14th International Conference on Harmonics and Quality of Power, Bergamo, Italy, 2010, pp. 1‒7.
  42.  A. Gil de Castro, M.A. Moreno, L.V. Pallarés, and A.A. Pérez, “Harmonic Effect in Street Lighting”, Proceedings of the 7th International Conference-Workshop Compatibility and Power Electronics (CPE), Tallinn, Estonia, 2011, pp. 16‒21.
  43.  M.J.H. Orzáez, Róchaz J. Sola, and A. Gago-Calderon, “Electrical consequences of large-scale replacement of metal-halide by LED luminaires”, Light. Res. Technol. 50, 282–293 (2016).
  44.  M.H.J. Bollen, S.K. Rönnberg, E.O.A. Larsson, M. Wahlberg, and C.M. Lundmark, “Harmonic Emission from Installations with Energy- Efficient Lighting”, Proceedings of the 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal, 2011, pp. 1‒6.
  45.  EN 50160:2007 “Voltage Characteristics of Electricity Supplied by Public Distribution Systems”, European Union: Brussels, Belgium, (2007).
  46.  R. Sikora, P. Markiewicz, and W. Pabjańczyk, “Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire”, Energies 11, 1386‒1406 (2018).
  47.  R. Sikora, P. Markiewicz, and W. Pabjańczyk, “The Active Power Losses in the Road Lighting Installation with Dimmable LED Luminaires”, Sustainability10, 4742‒4760 (2018).
  48.  IEC 60287-1-1, Electric Cables – Calculation of current rating – calculation of losses – Section 1: General, (2006).
  49.  IEEE Std. 1459-2010. Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, (2010).
  50.  Ustawa z dnia 20 maja 2016 r. o efektywności energetycznej, Dz.U. 2016 poz. 831.
  51.  The Energy Effic. Directive (2012/27/EU).
  52.  R.C. Degeneff, T.M. Halleran, T.M. McKernan, and J.A. Palmer, “Pipe – type cable ampacities in the presence of Harmonics”, IEEE Trans. Power Deliv. 8, 1689 –1695 (1993).
  53.  C. Demoulias, D.P. Labridis, P.S. Dokopoulos, and K. Gouramanis, “Ampacity of Low-Voltage Power Cables Under Nonsinusoidal Currents”, IEEE Trans. Power Deliv. 22, 584‒594 (2007).
  54.  J.J. Desmet, G. Vanalme, R. Belmans, and D. Van Dommelen, “Simulation of losses in LV cables due to nonlinear loads”, 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008, pp. 785‒790.
  55.  A. Hiranandani, “Calculation of cable ampacities including the effects of harmonics”, IEEE Industry Applications Magazine 4, 42‒51 (1998).
  56.  Z. Gabryjelski and Z. Kowalski, Sieci i urządzenia oświetleniowe. Zagadnienie wybrane, Wydawnictwo Politechniki Łódzkiej, Łódź, 1997.
  57.  EN 13201-5:2015. Light and lighting. Road lighting – Part 5: Energy performance indicators.
  58.  “Electricity price statistics”. [Online] Available: https://ec.europa.eu/eurostat/statistics-explained/pdfscache/45239.pdf.
  59.  Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, “Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej”. [Online] Available: http://www.kobize.pl/ [in Polish].
Przejdź do artykułu

Autorzy i Afiliacje

Roman Sikora
1
ORCID: ORCID
Przemysław Markiewicz
1
ORCID: ORCID
Paweł Rózga
1

  1. Lodz University of Technology, Institute of Electrical Power Engineering, ul. Stefanowskiego 18/22, 90-924 Lodz, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The optimum combination of blade angle of the runner and guide vane opening with Kaplan turbine can improve the hydroelectric generating the set operation efficiency and the suppression capability of oscillations. Due to time and cost limitations and the complex operation mechanism of the Kaplan turbine, the coordination test data is insufficient, making it challenging to obtain the whole curves at each head under the optimum coordination operation by field tests. The field test data is employed to propose a least-squares support vector machine (LSSVM)-based prediction model for Kaplan turbine coordination tests. Considering the small sample characteristics of the test data of Kaplan turbine coordination, the LSSVM parameters are optimized by an improved grey wolf optimization (IGWO) algorithm with mixed non-linear factors and static weights. The grey wolf optimization (GWO) algorithm has some deficiencies, such as the linear convergence factor, which inaccurately simulates the actual situation, and updating the position indeterminately reflects the absolute leadership of the leader wolf. The IGWO algorithm is employed to overcome the aforementioned problems. The prediction model is simulated to verify the effectiveness of the proposed IGWO-LSSVM. The results show high accuracy with small samples, a 2.59% relative error in coordination tests, and less than 1.85% relative error in non-coordination tests under different heads.
Przejdź do artykułu

Bibliografia

  1.  H.A. Menarin, H.A. Costa, G.L.M. Fredo, R.P. Gosmann, E.C. Finardi, and L.A. Weiss, “Dynamic Modeling of Kaplan Turbines Including Flow Rate and Efficiency Static Characteristics”, IEEE Trans. Power Syst. 34(4), 3026‒3034 (2019).
  2.  M.M. Shamsuddeen, J. Park, Y. Choi, and J. Kim, “Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner”, Renew. Energy 162, 861‒876 (2020).
  3.  P. Pennacchi, P. Borghesani, and S. Chatterton, “A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines”, Mech. Syst. Signal Process. 60‒61, 375‒390 (2015).
  4.  A. Javadi and H. Nilsson, “Detailed numerical investigation of a Kaplan turbine with rotor-stator interaction using turbulence-resolving simulations”, Int. J. Heat Fluid Flow 63, 1‒13 (2017).
  5.  D. Kranjcic and G. Štumberger, “Differential Evolution-Based Identification of the Nonlinear Kaplan Turbine Model”, IEEE Trans. Energy Convert. 29(1), 178‒187 (2014).
  6.  Z. Krzemianowski, “Engineering design of low-head Kaplan hydraulic turbine blades using the inverse problem method”, Bull. Pol. Acad. Sci. tech. Sci. 67(6), 1133–1147 (2019).
  7.  A.B. Janjua, M.S. Khalil, M. Saeed, F.S. Butt, and A.W. Badar, “Static and dynamic computational analysis of Kaplan turbine runner by varying blade profile”, Energy Sustain. Dev. 58, 90‒99 (2020).
  8.  Y. Wu, S. Liu, H. Dou, S. Wu, and T. Chen, “Numerical prediction and similarity study of pressure fluctuation in a prototype Kaplan turbine and the model turbine”, Comput. Fluids 56, 128‒142 (2012).
  9. S.J. Daniels, A.A.M. Rahat, G.R. Tabor, J.E. Fieldsend, and R.M. Everson, “Shape optimisation of the sharp-heeled Kaplan draft tube: Performance evaluation using Computational Fluid Dynamics”, Renew. Energy. 160, 112‒126 (2020).
  10.  F. Thiery, R. Gustavsson, and J.O. Aidanpää, “Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts”, Int. J. Mech. Sci. 99, 251‒261 (2015).
  11.  H. Quan, D. Srinivasan, and A. Khosravi, “Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals”, IEEE Trans. Neural Netw. Learn. Syst. 25(2), 303‒315 (2014).
  12.  V. Marano, G. Rizzo, and F.A. Tiano, “Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage”, Appl. Energy. 97, 849‒859 (2012).
  13.  N. Yang and H.Chen, “Decomposed Newton algorithm-based three-phase power-flow for unbalanced radial distribution networks with distributed energy resources and electric vehicle demands”, Int. J. Electr. Power Energy Syst. 96, 473‒483 (2018).
  14.  J. Park and K.H. Law, “Layout optimization for maximizing wind farm power production using sequential convex programming”, Appl. Energy. 151, 320‒334 (2015).
  15.  T. Ding, R. Bo, F. Li, Y. Gu, Q. Guo, and H. Sun, “Exact Penalty Function Based Constraint Relaxation Method for Optimal Power Flow Considering Wind Generation Uncertainty”, IEEE Trans. Power Syst. 30(3), 1546‒1547 (2015).
  16.  H. Kebriaei, B.N. Araabi, and A. Rahimi-Kian, “Short-Term Load Forecasting With a New Nonsymmetric Penalty Function”, IEEE IEEE Trans. Power Syst. 26 (4), 1817‒1825 (2011).
  17.  A.T. Eseye, J. Zhang, and D. Zheng, “ Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information”, Renew. Energy. 118, 357‒367 (2018).
  18.  Y. Li and X. Wnag, “Improved dolphin swarm optimization algorithm based on information entropy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 679–685 (2019).
  19.  H. Koyuncu and R. Ceylan, “A PSO based approach: Scout particle swarm algorithm for continuous global optimization problems”, J. Comput. Des. Eng. 6, 129‒142 (2019).
  20.  H. Liu, H.P. Wu, Y.F. Li, “Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction”, Energy Conv. Manag. 161, 266‒283 (2018).
  21.  M. Gratza, R. Witzmann, Ch.J. Steinhart, M. Finkel, M. Becker, T. Nagel, T. Wopperer, and H. Wackerl, “Frequency Stability in Island Networks: Development of Kaplan Turbine Model and Control of Dynamics”, in 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 2018, pp. 1‒7, doi: 10.23919/PSCC.2018.8442445.
  22.  M. Malvoni, M.G. D. Giorgi, and P.M. Congedo, “Photovoltaic forecast based on hybrid PCA–LSSVM using dimensionality reducted data”, Neurocomputing 211, 72‒83 (2016).
  23.  Y. Sun, Y. Liu, and H. Liu, “Temperature Compensation for a Six-Axis Force/Torque Sensor Based on the Particle Swarm Optimization Least Square Support Vector Machine for Space Manipulator”, IEEE Sensors Journal. 16(3), 798‒805 (2016).
  24.  X. Yan and N.A. Chowdhury, “Mid-term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach”, Int. J. Electr. Power Energy Syst. 53, 20‒26 (2013)
  25.  S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer”, Adv. Eng. Softw. 69, 46‒61 (2014).
  26.  I.B.M. Taha and E.E. Elattar, “Optimal reactive power resources sizing for power system operations enhancement based on improved grey wolf optimiser”, IET Gener. Transm. Distrib. 12(14), 3421‒3434 (2018).
  27.  W. Long, J.J. Jiao, X.M. Liang, and M.Z. Tang, “Inspired grey wolf optimizer for solving large-scale function optimization problems”, Appl. Math. Model. 60, 112‒126 (2018).
  28.  Y. Li, B. Zhang, and X. Xu, “Decoupling control for permanent magnet in-wheel motor using internal model control based on back- propagation neural network inverse system”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 961–972 (2018).
  29.  D. Huang, S. He, X. He, and X. Zhu, “Prediction of wind loads on high-rise building using a BP neural network combined with POD”, J. Wind Eng. Ind. Aerodyn. 170, 1‒17 (2017).
  30.  A.L. Yang, W.D. Li, and X. Yang, “Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines”, Knowledge-Based Syst. 163, 159‒173 (2019).
  31.  N.A. Menad, Z. Noureddine, A. Hemmati-Sarapardeh, and S. Shamshirband, “Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: Application to thermal enhanced oil recovery processes”, Fuel 242, 649‒663 (2019).
Przejdź do artykułu

Autorzy i Afiliacje

Fannie Kong
1
ORCID: ORCID
Jiahui Xia
1
ORCID: ORCID
Daliang Yang
1
ORCID: ORCID
Ming Luo
1
ORCID: ORCID

  1. School of Electrical Engineering, Guangxi University, Nanning, 530000, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This article considers the problem of the rise in temperature of the windings of an induction motor during start-up. Excessive growth of thermal stresses in the structure of a cage winding increases the probability of damage to the winding of the rotor. For the purpose of analysis of the problem, simplified mathematical relationships are given, enabling the comparison of quantities of energy released in a rotor winding during start-up by different methods. Also, laboratory tests were carried out on a specially adapted cage induction motor enabling measurement of the temperature of a rotor winding during its operation. Because there was no possibility of investigating motors in medium- and high-power drive systems, the authors decided to carry out tests on a low-power motor. The study concerned the start-up of a drive system with a 4 kW cage induction motor. Changes in the winding temperature were recorded for three cases: direct online start-up, soft starting, and the use of a variable-frequency drive (VFD). Conclusions were drawn based on the results obtained. In high-power motors, the observed phenomena occur with greater intensity, because of the use of deep bar and double cage rotors. For this reason, indication is made of the particular need for research into the energy aspects of different start-up methods for medium- and high-power cage induction motors in conditions of prolonged start-up.
Przejdź do artykułu

Bibliografia

  1.  Y. Gritli, S.B. Lee, F. Filippetti, and L. Zarri, “Advanced diagnosis of outer cage damage in double-squirrel-cage induction motors under time-vartyng conditions besed on wavelet analysis”, IEEE Trans. Ind. Appl. 50(3), 1791‒1800, (2014).
  2.  Y. Gritli, O. Di. Tommaso, R. Miceli, F. Filippeti, and C. Rossi, “Vibration signature analysis for rotor broken bar diagnosis in double cage induction motor drives”, 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 2013, pp. 1814‒1820.
  3.  F. Wilczyński, P. Strankowski, J. Guziński, M. Morawiec, and A. Lewicki, “Sensorless field oriented control for five-phase induction motors with third harmonic injection and fault insensitive feature”, Bull. Pol. Acad. Sci. Tech. Sci. 67(2), 253‒262, (2019).
  4.  C.G. Dias, L.C. da Silva, and I. E. Chabu, “Fuzzy-based statistical feature extraction for detecting broken rotor bars in line-fed and inverter-fed induction motors”, Energies 12(12), 2381, (2019).
  5.  T. Nakahama, D. Biswas, K. Kawano, and F. Ishibashi, “Improved cooling performance of large motors using fans”, IEEE Transactions on Energy Conversion, 21(2), 324‒331, (2006).
  6.  D. Staton, A. Boglietti, and A. Cavagnino, “Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors”, IEEE Trans. Energy Convers. 20(3), 620‒628, (2005).
  7.  C. Ulu, O. Korman, and G. Komurgoz, “Electromagnetic and thermal design/analysis of an induction motor for electric vehicles”, 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech Republic, 2017.
  8.  Y. Xie, J. Guo, P. Chen, and Z. Li, “Coupled fluid-thermal analysis for induction motors with broken bars operating under the rated load”, Energies, 11(8), 2024, (2018).
  9.  K.N. Gyftakis, D. Athanasopoulos, and J. Kappatou, “Study of double cage induction motors with different rotor bar materials”, 20th International Conference on Electrical Machines (ICEM), Marseille, France, 2012, pp. 1450‒1456.
  10.  Z. Maddi and D. Aouzellag, “Dynamic modelling of induction motor squirrel cage for different shapes of rotor deep bars with estimation of the skin effect”, Prog. Electromagn. Res. M 59, 147‒160, (2017)
  11.  M. Sundaram, M. Mohanraj, P. Varunraj, T.D. Kumar, and S. Sharma, “FEA based electromagnetic analysis of induction motor rotor bars with improved starting torque for traction applications”, Proceedings of the International Conference on Automatic Control, Mechatronics and Industrial Engineering (ACMIE), Suzhou, China, 2018.
  12.  H.J. Lee, S.H. Im, D.Y. Um, G.S. Park, “A design of rotor bar for improving starting torque by analyzing rotor resistance and reactance in squirrel cage induction motor”, IEEE Trans. Magn. 99, 1‒4, (2017).
  13.  L. Livadaru, A. Simion, A. Munteanu, M. Cojan, and O. Dabija, “Dual cage high power induction motor with direct start-up design and FEM analysis” Adv. Electr. Comput. Eng. 13(2), 55‒58, (2013).
  14.  S. Sinha, N.K. Deb, and S.K. Biswas, “The design and its verification of the double rotor double cage induction motor”, Journal of The Institution of Engineers (India): Series B 98(1), 107‒113, (2017).
  15.  W. Poprawski and T. Wolnik, “Innovative design of double squirrel cage induction motor for high start frequency operation”, Electr. Mach. Trans. J. Inst. Electr. Drives Mach. KOMEL 111(3), 41‒44, (2016).
  16.  J. Mróz and W. Poprawski, “Improvement of the Thermal and Mechanical Strength of the Starting Cage of Double-Cage Induction Motors”, Energies 12 (23), 4551, (2019).
  17.  J. Mróz, “Start-up of the Deep-Bar Motor with the use of the Softstart-up – An Energetisitc Face”, Zeszyty Problemowe BOBRME Komel 81, 17‒22, (2009) [in Polish].
  18.  J. Mróz, “Energy Emitted in the Induction Motor’s Winding During the Start-up with the use of the Softstart-up”, Zeszyty Problemowe BOBRME Komel, 84, 121‒126, (2009) [in Polish].
  19.  M.G. Solveson, B. Mirafazal, and N.A.O. Demerdash, “Soft-Started Induction Motor Modeling and Heating Issues for Different Starting Profiles Using a Flux Linkage ABC Frame of Reference”, IEEE Trans. Ind. Appl. 42(4), 973‒982, (2006)
  20.  R. Krok,” Influence of work environment on thermal state of electric mine motors”, Arch. Electr. Eng. 60(3), 357‒370, (2011).
  21.  Q. Al’Akayshee and D.A. Staton, “1150 hp motor design, electromagnetic and thermal analysis”, ICEM – 15-th International conference on electrical machines, Bruges, Belgium, 2002.
  22.  J. Mróz, The Analysis of Coupled Electromechanical and Thermal Problems in Transient States of Double-Cage Induction Motors, Publishing House Rzeszow University of Technology: Rzeszow, Poland, 2013, [in Polish].
Przejdź do artykułu

Autorzy i Afiliacje

Jan Mróz
1
Piotr Bogusz
1

  1. Rzeszów University of Technology, The Faculty of Electrical and Computer Engineering, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Przejdź do artykułu

Bibliografia

  1.  M.J. Mahmoodabadi, R.A. Maafi, and M. Taherkhorsandi, “An optimal adaptive robust PID controller subject to fuzzy rules and sliding modes for MIMO uncertain chaotic systems”, Appl. Soft Comput. 52(1), 1191‒1199 (2017).
  2.  C. Lorenzini, A.S. Bazanella, L.F. Alves Pereira, and G.R. Gonçalves da Silva, “The generalized forced oscillation method for tuning PID controllers”, ISA Trans. 87(1), 68‒87 (2019).
  3.  S.K. Valluru and M. Singh, “Performance investigations of APSO tuned linear and nonlinear PID controllers for a nonlinear dynamical system”, J. Electr. Syst. Inf. Technol. 5(3), 442‒452 (2018).
  4.  M. Kumar, D. Prasad, B.S. Giri, and R.S. Singh, “Temperature control of fermentation bioreactor for ethanol production using IMC-PID controller”, Biotechnol. Rep. 22(1), e00319 (2019).
  5.  D.B. Santosh Kumar and R. Padma Sree, “Tuning of IMC based PID controllers for integrating systems with time delay”, ISA Trans. 63(1), 242‒255 (2016).
  6.  J. Prakash and K. Srinivasan, “Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor”, ISA Trans. 48(3), 273‒282 (2009).
  7.  M. Hamdy and I. Hamdan, “Robust fuzzy output feedback controller for affine nonlinear systems via T–S fuzzy bilinear model: CSTR benchmark”, ISA Trans. 57(1), 85‒92 (2015).
  8.  V. Ghaffari, S. VahidNaghavi, and A.A. Safavi, “Robust model predictive control of a class of uncertain nonlinear systems with application to typical CSTR problems”, J. Process Control. 23(4), 493‒499 (2013).
  9.  W.-D. Chang, “Nonlinear CSTR control system design using an artificial bee colony algorithm”, Simul. Modell. Pract. Theory 31(1), 1‒9 (2013)
  10.  Y.P. Wang, N.R. Watson, and H.H. Chong, “Modified genetic algorithm approach to design of an optimal PID controller for AC–DC transmission systems”, Int. J. Electr. Power Energy Syst. 24(1), 59‒69 (2002).
  11.  S.S. Jadon, R. Tiwari, H. Sharma, and J.C. Bansal, “Hybrid Artificial Bee Colony algorithm with Differential Evolution”, Appl. Soft Comput. 58(1), 11‒24 (2017).
  12.  D. Karaboga, “An Idea Based on Honey Bee Swarm for Numerical Optimization”, Technical Report-TR06, Department of Computer Engineering, Engineering Faculty, Erciyes University (2005).
  13.  J. Zhou, X.Yao, F.T.S. Chan, Y. Lin, H. Jin, L. Gao, X. Wang, “An individual dependent multi-colony artificial bee colony algorithm”, Inf. Sci. 485(1), 114‒140 (2019).
  14.  X. Chen, H. Tianfield, and K. Li, “Self-adaptive differential artificial bee colony algorithm for global optimization problems”, Swarm Evol. Comput. 45(1), 70‒91 (2019).
  15.  Y. Zhang, S. Cheng, Y. Shi, D.-Wei Gong, and X. Zhao, “Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm”, Expert Syst. Appl. 137(1), 46‒58 (2019).
  16.  R. Szczepanski, T. Tarczewski, and L.M. Grzesiak, “Adaptive state feedback speed controller for PMSM based on Artificial Bee Colony algorithm”, Appl. Soft Comput. 83(1), 105644 (2019).
  17.  Q. Wei, Z. Guo, H.C. Lau, and Z. He, “An artificial bee colony-based hybrid approach for waste collection problem with midway disposal pattern”, Appl. Soft Comput. 76(1), 629‒637 (2019).
  18.  T. Sen and H.D. Mathur, “A new approach to solve Economic Dispatch problem using a Hybrid ACO–ABC–HS optimization algorithm”, Electr. Power Energy Syst. 78(1), 735–744 (2017).
  19.  X. Li , Z. Peng , B. Dub, J. Guo, W. Xu, and K. Zhuang, “Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems”, Comput. Ind. Eng. 113(1), 10–26 (2017).
  20.  S. Lua, X. Liua, J. Peia, M.T. Thai, and P.M. Pardalos, “A hybrid ABC-TS algorithm for the unrelated parallel-batchingmachines scheduling problem with deteriorating jobs and maintenance activity”, Appl. Soft Comput. 66(1), 168–182 (2018).
  21.  S. Goudarzi et.al., “ABC-PSO for vertical handover in heterogeneous wireless networks”, Neurocomputing 256(1), 63–81 (2017).
  22.  M.A. Awadallah, A.L. Bolaji, and M.A. Al-Betar, “A hybrid artificial bee colony for a nurse rostering problem”, Appl. Soft Comput. 35(1), 726‒739 (2015).
  23.  X. Yan, Y. Zhu, W. Zou, and L. Wang, “A new approach for data clustering using hybrid artificial bee colony algorithm”, Neurocomputing, 97(1), 241‒250 (2012).
  24.  W.-F. Gao and S.-Y. Liu, “A modified artificial bee colony algorithm”, Eng. Appl. Artif. Intell. 39(1), 3, 687‒697 (2012).
  25.  P. Pramanik and M.K. Maiti, “An inventory model for deteriorating items with inflation induced variable demand under two level partial trade credit: A hybrid ABC-GA approach”, Biotechnol. Rep. 85(1), 194–207 (2019).
  26.  V. Hajisalem and S.Babaie, “A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and anomaly detection”, Comput. Networks 136(1), 37–50 (2018).
  27.  W. Chmiel, P. Kadłuczka, J. Kwiecień, and B. Filipowicz, “A comparison of nature inspired algorithms for the quadratic assignment problem”, Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 513‒522 (2017).
  28.  Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 679‒685 (2019).
  29.  R. Gao, A. O’dywer, and E. Coyle, “A Nonlinear PID control for CSTR using local model networks”, Proceedings of 4th World Congress on Intelligent Control and Automation, Shanghai, China, 2002.
  30.  K. Vijayakumar and M. Thathan, “Enhanced ABC Based PID Controller for Nonlinear Control Systems”, Indian J. Sci. Technol. 8(1), 1‒9 (2015).
  31.  D. Ustuna and A. Akdagli, “Design of band–notched UWB antenna using a hybrid optimization based on ABC and DE algorithms”, Int. J. Electron. Commun. 87(1), 10–21 (2018).
  32.  D. Zhang, R. Dong, Y.-W. Si, F. Ye, Q. Cai, “A hybrid swarm algorithm based on ABC and AIS for 2L-HFCVRP”, Appl. Soft Comput. 64(1), 468–479 (2018).
  33.  S. Surjanovic and D. Bingham, “Virtual Library of Simulation Experiments: Test Functions and Datasets” [Online]. Available: http:// www.sfu.ca/~ssurjano [Accessed: January 21, 2021].
  34.  D. T. Pham and M. Castellani, “Benchmarking and comparison of nature-inspired population-based continuous optimisation algorithms”, Soft Comput. (18), 871–903 (2014).
  35.  Y. Zhang, P. Wang, L. Yang, Y. Liu, Y. Lu, and X. Zhu, “Novel Swarm Intelligence Algorithm for Global Optimization and Multi-UAVs Cooperative Path Planning: Anas Platyrhynchos Optimizer”, Appl. Sci. 10(14), 4821, 1‒29 (2020).
  36.  K. Anbarasan and K. Srinivasan, “Design of RTDA controller for industrial process using SOPDT model with minimum or non-minimum zero”, ISA Trans. 57, 231–244 (2015).
Przejdź do artykułu

Autorzy i Afiliacje

Nedumal Pugazhenthi P
1
S. Selvaperumal
1
ORCID: ORCID
K. Vijayakumar
2

  1. Department of EEE, Syed Ammal Engineering College, Ramanathapuram, Tamilnadu, India
  2. Department of electronics and instrumentation, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamilnadu, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

To improve the curve driving stability and safety under critical maneuvers for four-wheel-independent drive autonomous electric vehicles, a three-stage direct yaw moment control (DYC) strategy design procedure is proposed in this work. The first stage conducts the modeling of the tire nonlinear mechanical properties, i.e. the coupling relationship between the tire longitudinal force and the tire lateral force, which is crucial for the DYC strategy design, in the STI (Systems Technologies Inc.) form based on experimental data. On this basis, a 7-DOF vehicle dynamics model is established and the direct yaw moment calculation problem of the four-wheel-independent drive autonomous electric vehicle is solved through the nonsingular fast terminal sliding mode (NFTSM) control method, thus the optimal direct yaw moment can be obtained. To achieve this direct yaw moment, an optimal allocation problem of the tire forces is further solved by using the trust-region interior-point method, which can effectively guarantee the solving efficiency of complex optimization problem like the tire driving and braking forces allocation of four wheels in this work. Finally, the effectiveness of the DYC strategy proposed for the autonomous electric vehicles is verified through the CarSim-Simulink co-simulation results.
Przejdź do artykułu

Bibliografia

  1.  H. Wang, K. Xu, Y. Cai, and L. Chen, “Trajectory planning for lane changing of intelligent vehicles under multiple operating conditions”, J. Jiangsu Univ. Nat. Sci. 40(3), 255‒260 (2019).
  2.  Y. Li, B. Zhang, and X. Xu, “Robust control for permanent magnet in-wheel motor in electric vehicles using adaptive fuzzy neural network with inverse system decoupling”, Trans. Can. Soc. Mech. Eng. 42(3), 286‒297 (2018).
  3.  Y. Li, H. Deng, X. Xu, and W. Wang, “Modelling and testing of in-wheel motor drive intelligent electric vehicles based on co-simulation with Carsim/Simulink”, IET. Intell. Transp. Syst. 13(1), 115‒123 (2019).
  4.  D. Zhang, G. Liu, H. Zhou, and W. Zhao, “Adaptive sliding mode fault-tolerant coordination control for four-wheel independently driven electric vehicles”, IEEE. Trans. Ind. Electron. 65(11), 9090‒9100 (2018).
  5.  T. Chen, X. Xu, L. Chen, H. Jiang, Y. Cai, and Y. Li, “Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles”, Mech. Syst. Signal. Process. 101, 377‒388 (2018).
  6.  T. Chen, X. Xu, Y. Cai, H. Jiang, and X. Sun, “Reliable sideslip angle estimation of four-wheel independent drive electric vehicle by information iteration and fusion”, Math. Probl. Eng. 2018, 9075372 (2018).
  7.  H. Zhang, J. Liang, H. Jiang, Y. Cai, and X. Xu, “Stability research of distributed drive electric vehicle by adaptive direct yaw moment control”, IEEE Access. 7, 106225‒106237 (2019).
  8.  L.D. Novellis, A. Sorniotti, P. Gruber, J. Orus, J.R. Fortun, J. Theunissen and J. D. Smet, “Direct yaw moment control actuated through electric drivetrains and friction brakes: Theoretical design and experimental assessment”, Mechatronics. 26, 1‒15 (2015).
  9.  Y. Chen, J. Hedrick, and K. Guo, “A novel direct yaw moment controller for in-wheel motor electric vehicles”, Veh. Syst. Dyn. 51(6), 925‒942 (2013).
  10.  A. Goodarzi, F. Diba, and E. Esmailzadeh, “Innovative active vehicle safety using integrated stabilizer pendulum and direct yaw moment control”, J. Dyn. Syst-Trans. ASME. 136(5), DS-12-1335 (2014).
  11.  S. Ding and J. Sun, “Direct yaw-moment control for 4WID electric vehicle via finite-time control technique”, Nonlinear Dyn. 88(1), 239‒254 (2017).
  12.  S. Ding, L. Liu, and W. Zheng, “Sliding mode direct yaw-moment control design for in-wheel electric vehicles”, IEEE. Trans. Ind. Electron. 64(8), 6752‒6762 (2017).
  13.  W. Huang, P. Wong, K. Wong, C. Vong, and J. Zhao, “Adaptive neural control of vehicle yaw stability with active front steering using an improved random projection neural network”, Veh. Syst. Dyn. 59(3), 396‒414 (2021), doi: 10.1080/00423114.2019.1690152.
  14.  J. Wagner and J. Keane, “A strategy to verify chassis controller software-dynamics, hardware, and automation”, IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum. 27(4), 480‒493 (1997).
  15.  M. Reiter and J. Wagner, “Automated automotive tire inflation system–effect of tire pressure on vehicle handling”, IFAC Proceedings 47(3), 638‒643 (2010).
  16.  Y. Shi, Q. Liu, and F. Yu, “Design of an adaptive FO-PID controller for an in-wheel-motor driven electric vehicle”, SAE Int. J. Commer. Veh. 10, 265‒274 (2017).
  17.  H. Guo, F. Liu, F. Xu, H. Chen, D. Cao, and Y. Ji, “Nonlinear model predictive lateral stability control of active chassis for intelligent vehicles and its FPGA implementation”, IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum. 49(1), 2‒13 (2017).
  18.  Q. Meng, T. Zhao, C. Qian, Z. Sun, and P. Ge, “Integrated stability control of AFS and DYC for electric vehicle based on non-smooth control”, Int. J. Syst. Sci. 49(7), 1518‒1528 (2018).
  19.  J. Song, “Development and comparison of integrated dynamics control systems with fuzzy logic control and sliding mode control”, J. Mech. Sci. Technol. 27(6), 1853‒1861 (2013).
  20.  J. Wang and R. He, “Hydraulic anti-lock braking control strategy of a vehicle based on a modified optimal sliding mode control method”, Proc. Inst. Mech. Eng. Part D-J. Aut. 233(12), 3185‒3198 (2019).
  21.  X. Sun, Y. Cai, C. Yuan, S. Wang, and L. Chen, “Fuzzy sliding mode control for the vehicle height and leveling adjustment system of an electronic air suspension”, Chin. J. Mech. Eng. 31(25), (2018), doi. 10.1186/s10033-018-0223-8.
  22.  S. Chen, J. Wang, M. Yao, and Y. Kim, “Improved optimal sliding mode control for a non-linear vehicle active suspension system”, J. Sound. Vib. 395, 1‒25 (2017).
  23.  Z. Yang, D. Zhang, X. Sun, W. Sun, and L. Chen, “Nonsingular Fast Terminal Sliding Mode Control for a Bearingless Induction Motor”, IEEE Access. 5, 16656‒16664 (2017).
  24.  E. Mousavinejad, Q. Han, F. Yang, Y. Zhu, and L. Vlacic, “Integrated control of ground vehicles dynamics via advanced terminal sliding mode control”, Veh. Syst. Dyn. 55(2), 268‒294 (2017).
  25.  A. Asiabar and R. Kazemi, “A direct yaw moment controller for a four in-wheel motor drive electric vehicle using adaptive sliding mode control”, Proc. Inst. Mech. Eng. Part K-J. Multi-Body Dyn. 233(3), 549‒567 (2019).
  26.  J. Zhang and J. Li, “Integrated vehicle chassis control for active front steering and direct yaw moment control based on hierarchical structure”, Trans. Inst. Meas. Control. 41(9), 2428‒2440 (2019).
  27.  S. Yue and Y. Fan, “Hierarchical direct yaw-moment control system design for in-wheel motor driven electric vehicle”, Int. J. Automot. Technol. 19(4), 695‒703 (2018).
  28.  X. Chen, J. Yang, D. Zhang, and J. Liang, “Complete large margin linear discriminant analysis using mathematical programming approach”, Pattern Recogn. 46(6), 1579‒1594 (2013).
  29.  R.H. Byrd, M.E. Hribar, and J. Nocedal, “An interior point algorithm for large-scale nonlinear programming”, SIAM J. Optim. 9(4), 877‒900 (1999).
  30.  R.H. Byrd, J.C. Gilbert, and J. Nocedal, “A trust region method based on interior point techniques for nonlinear programming”, Math. Progr. 89(1), 149‒185 (2000).
  31.  K. Pan and Y. Lu, “Analysis on vehicle dynamic simulating sti tire model used in driving simulator”, Auto Eng. 2, 28‒30 (2009).
  32.  Q. Xia, L. Chen, X. Xu, Y. Cai, H. Jiang, T. Chen, and G. Pan, “Running states estimation of autonomous four-wheel independent drive electric vehicle by virtual longitudinal force sensors”, Math. Probl. Eng. 2019, 8302943 (2019), doi: 10.1155/2019/8302943.
  33.  J. Tian, J. Tong, and S. Luo, “Differential steering control of four-wheel independent-drive electric vehicles”, Energies 11(11), 2892 (2018).
  34.  T. Chen, X. Xu, Y. Li, W. Wang, and L. Chen, “Speed-dependent coordinated control of differential and assisted steering for in-wheel motor driven electric vehicles”, Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 232(9), 1206‒1220 (2018).
  35.  L. Chen, T. Chen, X. Xu, Y. Cai, H. Jiang, and X. Sun, “Multi-objective coordination control strategy of distributed drive electric vehicle by orientated tire force distribution method”, IEEE Access. 6, 69559‒69574 (2018).
  36.  P. Herman and W.Adamski, “Non-adaptive velocity tracking controller for a class of vehicles”, Bull. Pol. Acad. Sci. Tech. Sci. 65(4) 459‒468 (2017).
  37.  Y. Li, H. Wu, X. Xu, Y. Cai, and X. Sun, “Analysis on electromechanical coupling vibration characteristics of in-wheel motor in electric vehicles considering air gap eccentricity”, Bull. Pol. Acad. Sci. Tech. Sci. 67(5), 851‒862 (2019).
  38.  X. Zhang, H. He, J. Nie, and L. Chen, “Performance analysis of semi-active suspension with skyhook-inertance control”, J. Jiangsu Univ. Nat. Sci. 39(5), 497‒502 (2018).
  39.  Y.Li, B.Zhang, and X.Xu, “Decoupling control for permanent magnet in-wheel motor using internal model control based on back- propagation neural network inverse system”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 961‒972 (2018).
  40.  S. Jiang, P. Wong, R. Guan, Y. Liang, and J. Li, “An efficient fault diagnostic method for three-phase induction motors based on incremental broad learning and non-negative matrix factorization”, IEEE Access 9, 17780‒17790 (2019).
  41.  H. Ye, G. Li, S. Ding, and H. Jiang, “Direct yaw moment control of electric vehicle based on non-smooth control technique”, J. Jiangsu Univ. Nat. Sci. 39(6), 640‒646 (2018).
  42.  H. Qiu, Z. Dong, and Z. Lei, “Simulation and experiment of integration control of ARS and DYC for electrical vehicle with four wheel independent drive”, J. Jiangsu Univ. Nat. Sci. 37(3), 268‒276 (2016).
  43.  S. Ding, L. Liu, and J. H. Park, “A novel adaptive nonsingular terminal sliding mode controller design and its application to active front steering system”, Int. J. Robust Nonlinear Control 29(12), 4250‒4269 (2019).
  44.  S. Ding and W. Zheng, “Nonsingular terminal sliding mode control of nonlinear second-order systems with input saturation”, Int. J. Robust Nonlinear Control 26(9) 1857‒1872 (2016).
  45.  H. Jiang, F. Cao, and W. Zhu, “Control method of intelligent vehicles cluster motion based on SMC”, J. Jiangsu Univ. Nat. Sci. 39(4), 385‒39 (2018).
  46.  B. Xu, G. Shi, W. Ji, F. Liu, and S. Ding, H. Zhu, “Design of an adaptive nonsingular terminal sliding model control method for a bearingless permanent magnet synchronous motor”, Trans. Inst. Meas. Control 39(12), 1821‒1828 (2017).
  47.  X. Yu, J. Yin, and S. Khoo, “Generalized Lyapunov criteria on finite-time stability of stochastic nonlinear systems”, Automatica 107,183‒189 (2019).
  48.  Y. Ma, Z. Zhang, Z. Niu, and N. Ding, “Design and verification of integrated control strategy for tractor-semitrailer AFS/DYC”, J. Jiangsu Univ. Nat. Sci. 39(5), 530‒536 (2018).
  49.  J. Wang, X. Yu, Z. Hui, and X. Hu, “Influence of running speed and lateral distance on vehicle transient aerodynamic characteristics during curve crossing”, J. Jiangsu Univ. Nat. Sci. 38(3), 249‒253 (2017).
  50.  C. Huang, L. Chen, C. Yun, H. Jiang, and Y. Chen, “Integrated Control of Lateral and Vertical Vehicle Dynamics Based on Multi-agent System”, Chin. J. Mech. Eng. 27(2), 304‒318 (2014).
  51.  W. Liu, R. Wang, C. Xie, and Q. Ye, “Investigation on adaptive preview distance path tracking control with directional error compensation”, Proc. Inst. Mech. Eng. Part I-J. Syst. Control Eng. 234(4), 484‒500 (2019), doi: 10.1177/0959651819865789.
  52.  T. Coleman and Y. Li, “A trust region and affine scaling interior point method for nonconvex minimization with linear inequality constraints”, Math. Progr. 88(1), 1‒31 (2000).
  53.  F. Leibfritz and E. Mostafa, “An interior point constrained trust region method for a special class of nonlinear semidefinite programming problems”, SIAM J. Optim. 12(4), 1048‒1074 (2002).
  54.  M. Rojas and T. Steihaug, “An interior-point trust-region-based method for large-scale non-negative regularization”, Inverse Probl. 18(5), 1291‒1307 (2002).
  55.  J. Bonnans and C. Pola, “A trust region interior point algorithm for linearly constrained optimization”, SIAM J. Optim. 7(3), 717‒731 (1997).
  56.  J. Erway and P. Gill, “A subspace minimization method for the trust-region step”, SIAM J. Optim. 20(3), 1439‒1461 (2010).
Przejdź do artykułu

Autorzy i Afiliacje

Xiaoqiang Sun
1 2
Yujun Wang
1
Yingfeng Cai
1
Pak Kin Wong
3
Long Chen
2
ORCID: ORCID

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang Jiangsu, China
  2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China
  3. Department of Electromechanical Engineering, University of Macau, Taipa, Macau
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

For fault detection of doubly-fed induction generator (DFIG), in this paper, a method of sliding mode observer (SMO) based on a new reaching law (NRL) is proposed. The SMO based on the NRL (NRL- SMO) theoretically eliminates system chatter caused by the reaching law and can be switched in time with system interference in terms of robustness and smoothness. In addition, the sliding mode control law is used as the index of fault detection. Firstly, this paper gives the NRL with the theoretically analyzes. Secondly, according to the mathematical model of DFIG, NRL-SMO is designed, and its analysis of stability and robustness are carried out. Then this paper describes how to choose the optimal parameters of the NRL-SMO. Finally, three common wind turbine system faults are given, which are DFIG inter-turn stator fault, grid voltage drop fault, and rotor current sensor fault. The simulation models of the DFIG under different faults is established. The simulation results prove that the superiority of the method of NRL-SMO in state tracking and the feasibility of fault detection.
Przejdź do artykułu

Bibliografia

  1.  Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, and C.K. Song. “Condition monitoring and fault detection of wind turbines and related algorithms: A review”, Renew. Sust. Energ. Rev. 13(1), 1‒39 (2009).
  2.  A. Stefani, A. Yazidi, C. Rossi, F. Filippetti, D. Casadei, and G.A. Capolino, “Doubly fed induction machines diagnosis based on signature analysis of rotor modulating signals”, IEEE Trans. Ind. Appl. 44(6), 1711‒1721(2008).
  3.  D. Shah, S. Nandi, and P. Neti, “Stator-interturn-fault detection of doubly fed induction generators using rotor-current and search-coil- voltage signature analysis”, IEEE Trans. Ind. Appl. 45(5), 1831‒1842 (2009).
  4.  G. Stojčić, K. Pašanbegović, and T.M. Wolbank, “Detecting faults in doubly fed induction generator by rotor side transient current measurement”, IEEE Trans. Ind. App. 50(5), 3494‒3502 (2014).
  5.  R. Roshanfekr and A. Jalilian, “Wavelet-based index to discriminate between minor inter-turn short-circuit and resistive asymmetrical faults in stator windings of doubly fed induction generators, a simulation study”, IET Gener. Transm. Distrib. 10(2), 374‒381 (2016).
  6.  M.B. Abadi et al., “Detection of stator and rotor faults in a DFIG based on the stator reactive power analysis”, in IECON 2014‒40th Annual Conference of the IEEE Industrial Electronics Society 2014 pp. 2037‒2043.
  7.  S. He, X. Shen, and Z. Jiang, “Detection and Location of Stator Winding Interturn Fault at Different Slots of DFIG”, IEEE Access 7, 89342‒89353 (2019).
  8.  I. Erlich, C. Feltes, and F. Shewarega, “Enhanced voltage drop control by VSC–HVDC systems for improving wind farm fault ridethrough capability”, IEEE Trans. Power Deliv. 29(1), 378‒385 (2013).
  9.  Ö. Göksu, R. Teodorescu, C.L. Bak, F. Iov, and P.C. Kjær, “Instability of wind turbine converters during current injection to low voltage grid faults and PLL frequency based stability solution”, IEEE Trans. Power Syst. 29(4), 1683‒1691 (2014).
  10.  Z. Fan, G. Song, X. Kang, J. Tang, and X. Wang, “Three-phase fault direction identification method for outgoing transmission line of DFIG-based wind farms”, J. Mod. Power Syst. 7(5), 1155‒1164 (2019).
  11.  L.G. Meegahapola, T. Littler, and D. Flynn, “Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults”, IEEE Trans. Sustain. Energy 1(3), 152‒162 (2010).
  12.  F. Aguilera, P.M. De la Barrera, C.H. De Angelo, and D.E. Trejo, “Current-sensor fault detection and isolation for induction-motor drives using a geometric approach”, Control Eng. Pract. 53, 35‒46 (2016).
  13.  S. Abdelmalek, S. Rezazi, and A.T. Azar, “Sensor faults detection and estimation for a DFIG equipped wind turbine”, Energy Procedia 139, 3‒9 (2017).
  14.  M. Liu and P. Shi, “Sensor fault estimation and tolerant control for Itô stochastic systems with a descriptor sliding mode approach”, Automatica 49(5), 1242‒1250 (2013).
  15.  Y.J. Kim, N. Jeon, and H. Lee, “Model based fault detection and isolation for driving motors of a ground vehicle”, Sens. Transducers 199(4), 67 (2016).
  16.  K. Xiahou, Y. Liu, L. Wang, M.S. Li, and Q.H. Wu, “Switching fault-tolerant control for DFIG-based wind turbines with rotor and stator current sensor faults”, IEEE Access 7, 103390‒103403 (2019).
  17.  K.S. Xiahou, Y. Liu, M.S. Li, and Q.H. Wu, “Sensor fault-tolerant control of DFIG based wind energy conversion systems”, Int. J. Electr. Power Energy Syst. 117, 105563 (2020).
  18.  Z.Y. Xue, K.S. Xiahou, M.S. Li, T.Y. Ji, and Q.H. Wu, “Diagnosis of multiple open-circuit switch faults based on long short-term memory network for DFIG-based wind turbine systems”, IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2600‒2610 (2019).
  19.  L. Jing, M. Zhao, P. Li, and X. Xu, “A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox”, Measurement 111, 1‒10 (2017).
  20.  W. Teng, H. Cheng, X. Ding, Y. Liu, Z. Ma, and H. Mu, “DNN-based approach for fault detection in a direct drive wind turbine”, IET Renew. Power Gener. 12(10), 1164‒1171 (2018).
  21.  M.N. Akram and S. Lotfifard, “Modeling and health monitoring of DC side of photovoltaic array”, IEEE Trans. Sustain. Energy 6(4), 1245‒1253 (2015).
  22.  W. Gao and J.C. Hung, “Variable structure control of nonlinear systems, A new approach”, IEEE Trans. Ind. Electron. 40(1), 45‒55 (1993).
  23.  C.J. Fallaha, M. Saad, H.Y. Kanaan, and K. Al-Haddad, “Sliding-mode robot control with exponential reaching law”, IEEE Trans. Ind. Electron. 58(2), 600‒610 (2010).
  24.  Y. Liu, Z. Wang, L. Xiong, J. Wang, X. Jiang, G. Bai, R. Li, S. Liu, “DFIG wind turbine sliding mode control with exponential reaching law under variable wind speed”, Int. J. Electr. Power Energy Syst. 96, 253‒260 (2018).
  25.  Z. Lan, L. Li, C. Deng, Y. Zhang, W. Yu, and P. Wong, “A novel stator current observer for fault tolerant control of stator current sensor in DFIG”, in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 790‒797.
Przejdź do artykułu

Autorzy i Afiliacje

RuiQi Li
1 2
Wenxin Yu
1 2
JunNian Wang
3 2
Yang Lu
1 2
Dan Jiang
1 2
GuoLiang Zhong
1 2
ZuanBo Zhou
1 2

  1. School of Information and Electrical Engineering, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
  2. Key Laboratory of Knowledge Processing Networked Manufacturing, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
  3. School of Physics and Electronics, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The synchronisation of a complex chaotic network of permanent magnet synchronous motor systems has increasing practical importance in the field of electrical engineering. This article presents the control design method for the hybrid synchronization and parameter estimation of ring-connected complex chaotic network of permanent magnet synchronous motor systems. The design of the desired control law is a challenging task for control engineers due to parametric uncertainties and chaotic responses to some specific parameter values. Controllers are designed based on the adaptive integral sliding mode control to ensure hybrid synchronization and estimation of uncertain terms. To apply the adaptive ISMC, firstly the error system is converted to a unique system consisting of a nominal part along with the unknown terms which are computed adaptively. The stabilizing controller incorporating nominal control and compensator control is designed for the error system. The compensator controller, as well as the adopted laws, are designed to get the first derivative of the Lyapunov equation strictly negative. To give an illustration, the proposed technique is applied to 4-coupled motor systems yielding the convergence of error dynamics to zero, estimation of uncertain parameters, and hybrid synchronization of system states. The usefulness of the proposed method has also been tested through computer simulations and found to be valid.
Przejdź do artykułu

Bibliografia

  1.  A.C. Fowler, J.D. Gibbon, and M.J. McGuinness, “The complex Lorenz equations”, Physica D 4, 139–163 (1982).
  2.  P. Liu, H. Song, and X. Li, “Observe-based projective synchronization of chaotic complex modified Van Der Pol-Duffing oscillator with application to secure communication”, J. Comput. Nonlinear Dyn. 10, 051015 (2015).
  3.  G.M. Mahmoud and A.A. Shaban, “On periodic solutions of parametrically excited complex non-linear dynamical systems”, Physica A 278(3‒4), 390–404 (2000).
  4.  G.M. Mahmoud and A.A. Shaban, “Periodic attractors of complex damped non-linear systems”, Int. J. Non-Linear Mech. 35(2), 309–323 (2000).
  5.  G.M. Mahmoud, “Periodic solutions of strongly non-linear Mathieu oscillators”, Int. J. Non-Linear Mech. 32(6), 1177–1185 (1997).
  6.  G.M. Mahmoud and E.E. Mahmoud, “Lag synchronization of hyperchaotic complex nonlinear systems”, Nonlinear Dynamics 67, 1613– 1622 (2012).
  7.  P. Liu and S. Liu, “Anti-synchronization between different chaotic complex systems”, Phys. Scr. 83, 065006 (2011).
  8.  S. Liu and P. Liu, “Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters”, Nonlinear Anal.-Real World Appl. 12, 3046–3055 (2011).
  9.  N. Siddique and F.U. Rehman, “Parameter Identification and Hybrid Synchronization in an Array of Coupled Chaotic Systems with Ring Connection: An Adaptive Integral Sliding Mode Approach”, Math. Probl. Eng. 2018, 6581493 (2018).
  10.  G.M. Mahmoud, E.E. Mahmoud, and A.A. Arafa, “Projective synchronization for coupled partially linear complex-variable systems with known parameters”, Math. Meth. Appl. Sci. 40(4), 1214–1222 (2017).
  11.  D.W. Qian, Y.F Xi, and S.W. Tong, “Chaos synchronization of uncertain coronary artery systems through sliding mode”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 455–462 (2019).
  12.  G.M. Mahmoud, E.E. Mahmoud, and A.A. Arafa, “On modified time delay hyperchaotic complex Lü system”, Nonlinear Dynamics 80(1‒2), 855–869 (2015).
  13.  G.M. Mahmoud, T. Bountis, M.A. Al-Kashif, and A.A. Shaban, “Dynamical properties and synchronization of complex nonlinear equations for detuned lasers”, Dynam. Syst. 24(1), 63–79 (2009).
  14.  J.-B. Hu, H. Wei, Y.-F. Feng, and X.-B. Yang, “Synchronization of fractional chaotic complex networks with delay”, Kybernetika 55, 203–215 (2019).
  15.  N.A. Almohammadi, E.O. Alzahrani, and M.M. El-Dessoky, “Combined modified function projective synchronization of different systems through adaptive control”, Arch. Control Sci. 29, 133–146 (2019).
  16.  H. Su, Z. Rong, M.Z.Q. Chen, X. Wang, G. Chen and H. Wang, “Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks”, IEEE Trans. Cybern. 43, 2182–2195 (2013).
  17.  A. Khan and U. Nigar, “Sliding mode disturbance observer control based on adaptive hybrid projective compound combination synchronization in fractional-order chaotic systems”, Int. J. Control Autom. Syst. 31, 885–899 (2020).
  18.  G.M. Mahmoud, E.A. Mansour, and T.M. Abed-Elhameed, “On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization”, Optik 130, 398–406 (2017).
  19.  S. Wang, X. Wang, X. Wang, and Y. Zhou, “Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems”, AIP Adv. 6, 045011 (2016).
  20.  J. Zhou, A. Oteafy, and N. Smaoui, “Adaptive synchronization of an uncertain complex dynamical network”, IEEE Trans. Autom. Control 51, 652–656 (2006).
  21.  X. Chen, J. Qiu, J. Cao, and H. He, “Hybrid synchronization behavior in an array of coupled chaotic systems with ring connection”, Neurocomputing 173, 1299–1309 (2016).
  22.  F. Zhang, C. Mu, X. Wang, I. Ahmed, and Y. Shu, “Solution bounds of a new complex PMSM system”, Nonlinear Dynamics 74, 1041–1051 (2013).
  23.  Y.Wang, Y. Fan, Q.Wang, and Y. Zhang, “Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers”, IEEE Trans. Circuits Syst. I-Regul. Pap. 59, 1786–1795 (2012).
  24.  L. Zarour, K. Abed, M. Hacil, and A Borni, “Control and optimisation of photovoltaic water pumping system using sliding mode”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 605–611 (2019).
  25.  N. Siddique, F.U. Rehman, M. Wasif, W. Abbasi, and Q. Khan, “Parameter Estimation and Synchronization of Vaidyanathan Hyperjerk Hyper-Chaotic System via Integral Sliding Mode Control”, 2018 AEIT Conference IEEE, 1–5 (2018).
  26.  K. Urbanski, “A new sensorless speed control structure for PMSM using reference model”, Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 489–496 (2017).
  27.  X. Sun, Z. Shi, Y. Zhou, W. Zebin, S. Wang,B. Su, L. Chen, and K. Li, “Digital control system design for bearingless permanent magnet synchronous motors”, Bull. Pol. Acad. Sci. Tech. Sci. 66(5), 687–698 (2018).
  28.  T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller”, Bull. Pol. Acad. Sci. Tech. Sci. 66(1), 49–58 (2018).
  29.  W. Xing-Yuan and Z. Hao, “Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system”, Chin. Phys. B 22, 048902 (2013).
  30.  Z. Zhang, Z. Li, M.P. Kazmierkowski, J. Rodríguez, and R. Kennel, “Robust Predictive Control of Three-Level NPC Back-to-Back Power Converter PMSG Wind Turbine Systems With Revised Predictions”, IEEE Trans. Power Electron. 33(11), 9588– 9598 (2018).
  31.  N. Hoffmann, F.W. Fuchs, M.P. Kazmierkowski, and D. Schröder, “Digital current control in a rotating reference frame – Part I: System modeling and the discrete time-domain current controller with improved decoupling capabilities”, IEEE Trans. Power Electron. 31(7), 5290–5305 (2016).
  32.  H. Won, Y.-K. Hong, M. Choi, H.-s. Yoon, S. Li and T. Haskew, “Novel Efficiency-shifting Radial-Axial Hybrid Interior Permanent Magnet Sychronous Motor for Electric Vehicle”, 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, 2020, pp. 47–52.
  33.  C. Jiang and S. Liu, “Synchronization and Antisynchronization of-Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection”, Complexity 4, 1–15 (2017).
  34.  M. Karabacak and H.I. Eskikurt, “Speed and current regulation of a permanent magnet synchronous motor via nonlinear and adaptive backstepping control”, Math. Comput. Model. 53, 2015–2030 (2011).
Przejdź do artykułu

Autorzy i Afiliacje

Nazam Siddique
1
ORCID: ORCID
Fazal U. Rehman
1

  1. Capital University of Science and Technology, Islamabad Expressway, Kahuta Road, Zone-V Islamabad, Pakistan
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Adsorption cooling and desalination technologies have recently received more attention. Adsorption chillers, using eco-friendly refrigerants, provide promising abilities for low-grade waste heat recovery and utilization, especially renewable and waste heat of the near ambient temperature. However, due to the low coefficient of performance (COP) and cooling capacity (CC) of the chillers, they have not been widely commercialized. Although operating in combined heating and cooling (HC) systems, adsorption chillers allow more efficient conversion and management of low-grade sources of thermal energy, their operation is still not sufficiently recognized, and the improvement of their performance is still a challenging task. The paper introduces an artificial intelligence (AI) approach for the optimization study of a two-bed adsorption chiller operating in an existing combined HC system, driven by low-temperature heat from cogeneration. Artificial neural networks are employed to develop a model that allows estimating the behavior of the chiller. Two crucial energy efficiency and performance indicators of the adsorption chiller, i.e., CC and the COP, are examined during the study for different operating sceneries and a wide range of operating conditions. Thus this work provides useful guidance for the operating conditions of the adsorption chiller integrated into the HC system. For the considered range of input parameters, the highest CC and COP are equal to 12.7 and 0.65 kW, respectively. The developed model, based on the neurocomputing approach, constitutes an easy-to-use and powerful optimization tool for the adsorption chiller operating in the complex HC system.
Przejdź do artykułu

Bibliografia

  1.  S. Moser and S. Lassacher, “External use of industrial waste heat – An analysis of existing implementations in Austria”, J. Clean Prod. 264, 121531 (2020).
  2.  J. Krzywanski, K. Grabowska, F. Herman, P. Pyrka, M. Sosnowski, T. Prauzner, and W. Nowak, “Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks”, Energy Conv. Manag. 153, 313‒322 (2017).
  3.  B. Rezaie and M.A. Rosen, “District heating and cooling: Review of technology and potential enhancements”, Appl. Energy 93, 2‒10 (2012).
  4.  A.P. Roskilly and M. Ahmad Al-Nimr, “Sustainable Thermal Energy Management”, Energy Conv. Manag. 159, 396‒397 (2018).
  5.  H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J.E. Thorsen, F. Hvelplund, and B.V. Mathiesen, “4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems”, Energy 68, 1‒11 (2014).
  6.  M. Widziński, P. Chaja, A. Andersen, M. Jaroszewska, S. Bykuć, and J. Sawicki, “Simulation of an alternative energy system for district heating company in the light of changes in regulations of the emission of harmful substances into the atmosphere”, Int. J. Sustain. Energy Plan. Manag. 24, 43‒56 (2019).
  7.  M. Chorowski and P. Pyrka, “Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration”, Energy 92, 221‒229 (2015).
  8.  R. AL-Dadah, S. Mahmoud, E. Elsayed, P. Youssef, and F. Al-Mousawi, “Metal-organic framework materials for adsorption heat pumps”, Energy 190, 116356 (2020).
  9.  M. Sosnowski, “Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology”, Energies 12, 4660 (2019).
  10.  A.S. Alsaman, A.A. Askalany, K. Harby, and M.S. Ahmed, “Performance evaluation of a solar-driven adsorption desalination-cooling system”, Energy 128, 196‒207 (2017).
  11.  A. Kulakowska, A. Pajdak, J. Krzywanski, K. Grabowska, A. Zylka, M. Sosnowski, M. Wesolowska, K. Sztekler, and W. Nowak, “Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica Gel-Based Adsorption Bed”, Energies 13, 1391 (2020).
  12.  J. Ling-Chin, H. Bao, Z. Ma, W. Taylor, and A. Paul Roskilly, “State-of-the-Art Technologies on Low-Grade Heat Recovery and Utilization in Industry”, in Energy Conversion – Current Technologies and Future Trends, eds. I.H. Al-Bahadly, IntechOpen, 2019.
  13.  K. Grabowska, J. Krzywanski, W. Nowak, and M. Wesolowska, “Construction of an innovative adsorbent bed configuration in the adsorption chiller – Selection criteria for effective sorbent-glue pair”, Energy 151, 317‒323 (2018).
  14.  K. Grabowska, M. Sosnowski, J. Krzywanski, K. Sztekler, W. Kalawa, A. Zylka, and W. Nowak, “The Numerical Comparison of Heat Transfer in a Coated and Fixed Bed of an Adsorption Chiller”, J. Therm. Sci. 27, 421‒426 (2018).
  15.  I.H. Al-Bahadly, Energy Conversion – Current Technologies and Future Trends, London, 2019.
  16.  J. Krzywanski, K. Grabowska, M. Sosnowski, A. Zylka, K. Sztekler, W. Kalawa, T. Wójcik, and W. Nowak, “An Adaptive Neuro-Fuzzy model of a Re-Heat Two-Stage Adsorption Chiller”, Therm. Sci. 23, 1053‒1063 (2019).
  17.  K.J. Chua, S.K. Chou, W.M. Yang, and J. Yan, “Achieving better energy-efficient air conditioning – A review of technologies and strategies”, Appl. Energy 104, 87‒104 (2013).
  18.  X.H. Li, X.H. Hou, X. Zhang, and Z.X. Yuan, “A review on development of adsorption cooling—Novel beds and advanced cycles”, Energy Conv. Manag. 94, 221‒232 (2015).
  19.  K. Sztekler, W. Kalawa, L. Mika, J. Krzywanski, K. Grabowska, M. Sosnowski, W. Nowak, T. Siwek, and A. Bieniek, “Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller”, Energies 13, 515 (2020).
  20.  Y.I. Aristov, I.S. Glaznev, and I.S. Girnik, “Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration”, Energy 46, 484‒492 (2012).
  21.  I.S. Girnik, A.D. Grekova, L.G. Gordeeva, and Yu.I. Aristov, “Dynamic optimization of adsorptive chillers: Compact layer vs. bed of loose grains”, Appl. Therm. Eng. 125, 823‒829 (2017).
  22.  U. Bau, N. Baumgärtner, J. Seiler, F. Lanzerath, C. Kirches, and A. Bardow, “Optimal operation of adsorption chillers: First implementation and experimental evaluation of a nonlinear model-predictive-control strategy”, Appl. Therm. Eng. 149, 1503‒1521 (2019).
  23.  M.B. Elsheniti, M.A. Hassab, and A.-E. Attia, “Examination of effects of operating and geometric parameters on the performance of a two-bed adsorption chiller”, Appl. Therm. Eng. 146, 674‒687 (2019).
  24.  J. Krzywanski, K. Grabowska, M. Sosnowski, A. Żyłka, K. Sztekler, W. Kalawa, T. Wójcik, and W. Nowak, “Modeling of a re-heat two- stage adsorption chiller by AI approach”, MATEC Web Conf. 240, 1‒3 (2018).
  25.  S. Narayanan, S. Yang, H. Kim, and E.N. Wang, “Optimization of adsorption processes for climate control and thermal energy storage”, Int. J. Heat Mass Transf. 77, 288‒300 (2014).
  26.  I.I. El-Sharkawy, H. AbdelMeguid, and B.B. Saha, “Towards an optimal performance of adsorption chillers: Reallocation of adsorption/ desorption cycle times”, Int. J. Heat Mass Transf. 63, 171‒182 (2013).
  27.  Q.W. Pan, R.Z. Wang, and L.W. Wang, “Comparison of different kinds of heat recoveries applied in adsorption refrigeration system”, Int. J. Refrig. 55, 37‒48 (2015).
  28.  R.P. Sah, B. Choudhury, R.K. Das, and A. Sur, “An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems”, Renew. Sust. Energ. Rev. 74, 364‒376 (2017).
  29.  L. Rutkowski, Computational Intelligence: Methods and Techniques, Springer Science & Business Media (2008).
  30.  J. Szczepański, J. Klamka, K.M. Węgrzyn-Wolska, I. Rojek, and P. Prokopowicz, “Computational Intelligence and Optimization Techniques in Communications and Control”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 181‒184 (2020).
  31.  B. Paprocki, A. Pregowska, and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 225‒233 (2020).
  32.  A. Cichocki, T. Poggio, S. Osowski, and V. Lempitsky, “Deep Learning: Theory and Practice”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 757‒759 (2018).
  33.  T. Poggio and Q. Liao, “Theory I: Deep networks and the curse of dimensionality”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 761‒773 (2018).
  34.  T. Poggio and Q. Liao, “Theory II: Deep learning and optimization”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 775‒787 (2018).
  35.  M. Figurnov, A. Sobolev, and D. Vetrov, “Probabilistic adaptive computation time”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 811‒820 (2018).
  36.  V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 799‒810 (2018).
  37.  S.C. Cagan, M. Aci, B.B. Buldum, and C. Aci, “Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 729‒739 (2019).
  38.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 199‒206 (2020).
  39.  S. Osowski and K. Siwek, “Local dynamic integration of ensemble in prediction of time series”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 517‒525 (2019).
  40.  J. Kurek, B. Świderski, S. Osowski, M. Kruk, and W. Barhoumi, “Deep learning versus classical neural approach to mammogram recognition”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 831‒840 (2018).
  41.  Q. Zhao, Y. Qiu, G. Zhou, and A. Cichocki, “Comparative study on the classification methods for breast cancer diagnosis”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 841‒848 (2018).
  42.  V. Osin, A. Cichocki, and E. Burnaev, “Fast multispectral deep fusion networks”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 875‒889 (2018).
  43.  J. Jakubowski and J. Chmielińska, “Detection of driver fatigue symptoms using transfer learning”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 869‒874 (2018).
  44.  P. Prokopowicz, D. Mikołajewski, K. Tyburek, and E. Mikołajewska, “Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 191‒198 (2020).
  45.  B. Cieniawska, K. Pentoś, and D. Łuczycka, “Neural modeling and optimization of the coverage of the sprayed surface”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 601‒608 (2020).
  46.  Y. Li, B. Zhang, and X. Xu, “Decoupling control for permanent magnet in-wheel motor using internal model control based on back- propagation neural network inverse system”, Bulletin of the Polish Academy of Sciences: Technical Science 66(6), 961‒972 (2018).
  47.  R. Korupczyński and J. Trajer, “Assessment of wind energy resources using artificial neural networks – case study at Łódź Hills”, Bull. Pol. Acad. Sci. Tech. Sci. 67, 115‒124 (2019).
  48.  J. Krzywanski, H. Fan, Y. Feng, A.R. Shaikh, M. Fang, and Q. Wang, “Genetic algorithms and neural networks in optimization of sorbent enhanced H2 production in FB and CFB gasifiers”, Energy Conv. Manag. 171, 1651‒1661 (2018).
  49.  J. Krzywanski, M. Wesolowska, A. Blaszczuk, A. Majchrzak, M. Komorowski, and W. Nowak, “The Non-Iterative Estimation of Bed- to-Wall Heat Transfer Coefficient in a CFBC by Fuzzy Logic Methods”, Procedia Eng. 157, 66‒71 (2016).
  50.  W. Muskała, J. Krzywański, R. Rajczyk, M. Cecerko, B. Kierzkowski, W. Nowak, and W. Gajewski, “Investigation of erosion in CFB boilers”, Rynek Energii 87, 97‒102 (2010).
  51.  W. Muskała, J. Krzywański, R. Sekret, and W. Nowak, “Model research of coal combustion in circulating fluidized bed boilers” Chem. Process Eng. 29, 473‒492 (2008).
  52.  A. Zylka, J. Krzywanski, T. Czakiert, K. Idziak, M. Sosnowski, K. Grabowska, T. Prauzner, and W. Nowak, “The 4th Generation of CeSFaMB in numerical simulations for CuO-based oxygen carrier in CLC system”, Fuel 255, 115776 (2019).
  53.  A. Błaszczuk and J. Krzywański, “A comparison of fuzzy logic and cluster renewal approaches for heat transfer modeling in a 1296 t/h CFB boiler with low level of flue gas recirculation”, Arch. Thermodyn. 38, 91‒122 (2017).
  54.  J. Krzywanski, M. Wesolowska, A. Blaszczuk, A. Majchrzak, M. Komorowski, and W. Nowak, “Fuzzy logic and bed-to-wall heat transfer in a large-scale CFBC”, Nt. J. Numer. Methods Heat Fluid Flow 28, 254‒266 (2018).
  55.  Machine learning software, Neural Designer. [Online] https://www.neuraldesigner.com/ (accessed on Jun 11, 2019).
  56.  J. Krzywanski, A. Blaszczuk, T. Czakiert, R. Rajczyk, and W. Nowak, “Artificial intelligence treatment of NOX emissions from CFBC in air and oxy-fuel conditions”, CFB-11: Proceedings of the 11th International Conference on Fluidized Bed Technology, 2014, pp. 619‒624.
  57.  J. Krzywański and W. Nowak, “Neurocomputing approach for the prediction of NOx emissions from CFBC in air-fired and oxygen-enriched atmospheres”, J. Power Technol.97, 75‒84 (2017).
  58.  Z. Salam, J. Ahmed, and B.S. Merugu, “The application of soft computing methods for MPPT of PV system: A technological and status review”, Appl. Energy107, 135‒148 (2013).
  59.  J. Krzywanski, “A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods”, Energies 12, 4441 (2019).
  60.  J. Krzywanski and W. Nowak, “Modeling of heat transfer coefficient in the furnace of CFB boilers by artificial neural network approach”, Int. J. Heat Mass Transf. 55, 4246‒4253 (2012).
  61.  J. Krzywanski and W. Nowak, “Modeling of bed-to-wall heat transfer coefficient in a large-scale CFBC by fuzzy logic approach”, Int. J. Heat Mass Transf. 94, 327‒334 (2016).
  62.  A.K. Kar, “Bio inspired computing – A review of algorithms and scope of applications”, Expert Syst. Appl.59, 20‒32 (2016).
  63.  C.Y. Tso, C.Y.H. Chao, and S.C. Fu, “Performance analysis of a waste heat driven activated carbon based composite adsorbent – Water adsorption chiller using simulation model”, Int. J. Heat Mass Transf. 55, 7596‒7610 (2012).
  64.  L. Yang and W. Wang, “The heat transfer performance of horizontal tube bundles in large falling film evaporators”, Int. J. Refrig. 34, 303‒316 (2011).
  65.  W. Kalawa, K. Grabowska, K. Sztekler, J. Krzywański, M. Sosnowski, S. Stefański, T. Siwek, and W. Nowak, “Progress in design of adsorption refrigeration systems. Evaporators”, EPJ Web Conf. 213, 02035 (2019).
  66.  B.B. Saha, S. Koyama, J.B. Lee, K. Kuwahara, K.C.A. Alam, Y. Hamamoto, A. Akisawa, and T. Kashiwagi, “Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller”, Int. J. Multiph. Flow 29, 1249‒1263 (2003).
  67.  J. Jeon, S. Lee, D. Hong, and Y. Kim, “Performance evaluation and modeling of a hybrid cooling system combining a screw water chiller with a ground source heat pump in a building”, Energy 35, 2006‒2012 (2010).
  68.  B.B. Saha, E.C. Boelman, and T. Kashiwagi, “Computer simulation of a silica gel-water adsorption refrigeration cycle – the influence of operating conditions on cooling output and COP”, ASHRAE Trans.: Res. 101, 348‒357 (1995).
  69.  K. Habib, B.B. Saha, A. Chakraborty, S. Koyama, and K. Srinivasan, “Performance evaluation of combined adsorption refrigeration cycles”, Int. J. Refrig. 34, 129‒137 (2011).
  70.  B.B. Saha, S. Koyama, T. Kashiwagi, A. Akisawa, K.C. Ng, and H.T. Chua, “Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system”, Int. J. Refrig. 26, 749‒757 (2003).
  71.  A. Li, A.B. Ismail, K. Thu, K.C. Ng, and W.S. Loh, “Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight”, Appl. Energy 130, 702‒711 (2014).
Przejdź do artykułu

Autorzy i Afiliacje

Jarosław Krzywanski
1
ORCID: ORCID
Karol Sztekler
2
ORCID: ORCID
Marcin Bugaj
3
ORCID: ORCID
Wojciech Kalawa
2
ORCID: ORCID
Karolina Grabowska
1
ORCID: ORCID
Patryk Robert Chaja
4
ORCID: ORCID
Marcin Sosnowski
1
ORCID: ORCID
Wojciech Nowak
2
ORCID: ORCID
Łukasz Mika
2
ORCID: ORCID
Sebastian Bykuć
4
ORCID: ORCID

  1. Jan Dlugosz University in Czestochowa, Faculty of Science and Technology, ul. A. Krajowej 13/15, 42-200 Czestochowa, Poland
  2. AGH University of Science and Technology, Faculty of Energy and Fuels, ul. A. Mickiewicza 30, 30-059 Cracow, Poland
  3. Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, ul. Nowowiejska 24, 00-665 Warsaw, Poland
  4. Institute of Fluid-Flow Machinery Polish Academy of Sciences, Department of Distributed Energy, ul. Fiszera 14, 80-952 Gdansk, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In the ceramic industry, quality control is performed using visual inspection in three different product stages: green, biscuit, and the final ceramic tile. To develop a real-time computer visual inspection system, the necessary step is successful tile segmentation from its background. In this paper, a new statistical multi-line signal change detection (MLSCD) segmentation method based on signal change detection (SCD) method is presented. Through experimental results on seven different ceramic tile image sets, MLSCD performance is analyzed and compared with the SCD method. Finally, recommended parameters are proposed for optimal performance of the MLSCD method.
Przejdź do artykułu

Bibliografia

  1.  G.M.A. Rahaman and M. Hossain, “Automatic Defect Detection and Classification Technique from Image: A Special Case Using Ceramic”, Int. J. Comput. Sci Inf. Secur. 1(1), 9 (2009).
  2.  M. Villalon-Hernandez, D. Almanza-Ojeda, and M. Ibarra- Manzano, “Color-Texture Image Analysis for Automatic Failure Detection in Tiles”, in Pattern Recognition, MCPR 2017. Lecture Notes in Computer Science, vol. 10267, pp. 159–168, eds. J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, and J.A. Olvera-López, Springer International Publishing, Cham, 2017.
  3.  M.H. Karimi and D. Asemani, “Surface defect detection in tiling industries using digital image processing methods: Analysis and evaluation”, ISA Trans. 53(3), 834‒844 (2014).
  4.  F.S. Najafabadi and H. Pourghassem, “Corner defect detection based on dot product in ceramic tile images”, In 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, Penang, Malaysia, 2011, pp. 293–297.
  5.  R. Mishra, C.L. Chandrakar, and R. Mishra, “Surface Defects Detection for Cermaic Tiles Using Image Processing and Morphological Techniques”, Appl. Sci. 2(2), 17 (2012).
  6.  T. Czimmermann et al., “Visual-Based Defect Detection and Classification Approaches for Industrial Applications – A SURVEY”, Sensors 20(5), 1459, (2020).
  7.  V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 799–810 (2018).
  8.  N. Wang, X. Zhao, Z. Zou, P. Zhao, and F. Qi, “Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning”, Comput.-Aided Civil Infrastruct. Eng. 35(3), 277–291 (2020).
  9.  X. Gu and Y. Sun, “Image analysis of ceramic burning based on cellular automata”, EURASIP J. Image Video Process. 2018(1), 110 (2018).
  10.  T. Matić, I. Vidović, and Ž. Hocenski, “Real Time Contour Based Ceramic Tile Edge and Corner Defects Detection”, Teh. Vjesn.-Technical Gazette 20(6), 8 (2013).
  11.  Ž. Hocenski, T. Keser, and A. Baumgartner, “A Simple and Efficient Method for Ceramic Tile Surface Defects Detection”, In 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007, pp. 1606–1611.
  12.  T. Matić, I. Aleksi, and Ž. Hocenski, “CPU, GPU and FPGA Implementations of MALD: Ceramic Tile Surface Defects Detection Algorithm”, Automatika 55(1), 9–21 (2014).
  13.  J. Zhuang, L. Yang, and J. Li, “An Improved Segmentation Algorithm Based on Superpixel for Typical Industrial Applications”, In 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2018, pp. 366–370.
  14.  X. Zhou, Y. Wang, Q. Zhu, J. Mao, C. Xiao, X. Lu, and H. Zhang, “A Surface Defect Detection Framework for Glass Bottle Bottom Using Visual Attention Model and Wavelet Transform”, IEEE Trans. Ind. Inform. 16(4), 2189–2201 (2020).
  15.  X. Yan, L. Wen, and L. Gao, “A Fast and Effective Image Preprocessing Method for Hot Round Steel Surface”, Math. Probl. Eng., 2019, 1–14 (2019).
  16.  R. Cunha et al., Applying Non-destructive Testing and Machine Learning to Ceramic Tile Quality Control”, In 2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC), Salvador, Brazil, 2018, pp. 54–61.
  17.  T. Matić, I. Aleksi, Ž. Hocenski, and D. Kraus, “Real-time biscuit tile image segmentation method based on edge detection”, ISA Transactions 76, 246–254 (2018).
  18.  S.M. Kay, Fundamentals of Statistical Signal Processing: Practical Algorithm Development, Prentice-Hall PTR, 2013.
  19.  L.G. Shapiro and R.M. Haralick, Computer and Robot Vision, Addison-Wesley Publishing Company, 1992.
  20.  Z. Hocenski and T. Keser, “Failure detection and isolation in ceramic tile edges based on contour descriptor analysis”, In 2007 Mediterranean Conference on Control & Automation, Athens, Greece, 2007, pp. 1–6.
  21.  R.C. Gonzalez and R.E.Woods, Digital Image Processing, Pearson, 2018.
  22.  Ž. Hocenski, T. Matić, and I. Vidović, “Technology transfer of computer vision defect detection to ceramic tiles industry”, In 2016 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 2016, pp. 301–305.
  23.  M. Montorsi, C. Mugoni, A. Passalacqua, A. Annovi, F. Marani, L. Fossa, R. Capitani, and T. Manfredini, “Improvement of color quality and reduction of defects in the ink jet-printing technology for ceramic tiles production: A design of experiments study”, Ceram. Int. 42(1, Part B), 1459–1469 (2016).
  24.  The GIMP Development Team. GIMP, 2019.
  25.  A.Z. Arifin and A. Asano, “Image Segmentation by Histogram Thresholding Using Hierarchical Cluster Analysis”, Pattern Recognit. Lett., 27(13), 1515–1521 (2006).
Przejdź do artykułu

Autorzy i Afiliacje

Filip Sušac
1
Tomislav Matić
1
Ivan Aleksi
1
Tomislav Keser
1

  1. J. J. Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
Przejdź do artykułu

Bibliografia

  1.  L. Cui, S. Huang, F. Wei, C. Tan, C. Duan, and M. Zhou, “Superagent: A customer service chatbot for E-commerce websites,” in ACL 2017 – 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of System Demonstrations, 2017, pp. 97–102, doi: 10.18653/v1/P17-4017.
  2.  M. Afzaal, M. Usman, and A. Fong, “Tourism mobile app with aspect-based sentiment classification framework for tourist reviews,” IEEE Trans. Consum. Electron. 65(2), 233–242, 2019, doi: 10.1109/TCE.2019.2908944.
  3.  M.S. Akhtar, T. Garg, and A. Ekbal, “Multi-task learning for aspect term extraction and aspect sentiment classification,” Neurocomputing 398, pp. 247–256, 2020, doi: 10.1016/j.neucom.2020.02.093.
  4.  M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Manandhar, “SemEval-2014 Task 4: Aspect Based Sentiment Analysis,” in Proceedings ofthe 8th International Workshop on Semantic Evaluation (SemEval 2014), 2014, pp. 27–35, doi: 10.3115/v1/s14-2004.
  5.  M. Ghiassi, J. Skinner, and D. Zimbra, “Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network,” Expert Syst. Appl. 40(16), 6266–6282, 2013, doi: 10.1016/j.eswa.2013.05.057.
  6.  M. Mladenović, J. Mitrović, C. Krstev, and D. Vitas, “Hybrid sentiment analysis framework for a morphologically rich language,” J. Intell. Inf. Syst. 46(3), 599–620, 2016, doi: 10.1007/s10844-015-0372-5.
  7.  Y. Kai, Y. Cai, H. Dongping, J. Li, Z. Zhou, and X. Lei, “An effective hybrid model for opinion mining and sentiment analysis,” in IEEE International Conference on Big Data and Smart Computing, BigComp 2017, 2017, pp. 465–466, doi: 10.1109/BIGCOMP.2017.7881759.
  8.  F. Iqbal et al., “A Hybrid Framework for Sentiment Analysis Using Genetic Algorithm Based Feature Reduction,” IEEE Access 7, pp. 14637–14652, 2019, doi: 10.1109/ACCESS.2019.2892852.
  9.  J.R. Alharbi and W.S. Alhalabi, “Hybrid approach for sentiment analysis of twitter posts using a dictionary-based approach and fuzzy logic methods: Study case on cloud service providers,” Int. J. Semant. Web Inf. Syst. 16(1), 116–145, 2020, doi: 10.4018/IJSWIS.2020010106.
  10.  S.C. Cagan, M. Aci, B.B. Buldum, and C. Aci, “Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy,” Bull. Polish Acad. Sci. Tech. Sci. 67(4), 729–739, 2019, doi: 10.24425/ bpasts.2019.130182.
  11.  B. Paprocki, A. Pregowska, and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks,” Bull. Polish Acad. Sci. Tech. Sci. 68(2), 225–233, 2020, doi: 10.24425/bpasts.2020.131844.
  12.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign,” Bull. Polish Acad. Sci. Tech. Sci. 68(2), 199–206, 2020, doi: 10.24425/bpasts.2020.131848.
  13.  S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680, 1983, doi: 10.1126/ science.220.4598.671.
  14.  F.F. Moghaddam, R.F. Moghaddam, and M. Cheriet, “Curved Space Optimization: A Random Search based on General Relativity Theory,” pp. 1–16, 2012, [Online]. Available: http://arxiv.org/abs/1208.2214.
  15.  S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Adv. Eng. Softw. 95, pp. 51–67, 2016, doi: 10.1016/j.advengsoft.2016.01.008.
  16.  T. Brychcín, M. Konkol, and J. Steinberger, “UWB: Machine Learning Approach to Aspect-Based Sentiment Analysis,” in Proc. 8th Int. Workshop Semantic Eval. (SemEval) (2014), 2015, no. SemEval, pp. 817–822, doi: 10.3115/v1/s14-2145.
  17.  J. Singh, G. Singh, and R. Singh, “Optimization of sentiment analysis using machine learning classifiers,” Human-centric Comput. Inf. Sci. 7(1), 2017, doi: 10.1186/s13673-017-0116-3.
  18.  M. Al-Smadi, O. Qawasmeh, M. Al-Ayyoub, Y. Jararweh, and B. Gupta, “Deep Recurrent neural network vs. support vector machine for aspect-based sentiment analysis of Arabic hotels’ reviews,” J. Comput. Sci. 27, pp. 386‒393, 2018, doi: 10.1016/j.jocs.2017.11.006.
  19.  P. Kalarani and S. Selva Brunda, “Sentiment analysis by POS and joint sentiment topic features using SVM and ANN,” Soft Comput. 23(16), 7067–7079, 2019, doi: 10.1007/s00500-018-3349-9.
  20.  L. Haghnegahdar and Y. Wang, “A whale optimization algorithm-trained artificial neural network for smart grid cyber intrusion detection,” Neural Comput. Appl. 32(13), 9427–9441, 2020, doi: 10.1007/s00521-019-04453-w.
  21.  J. Zhou, Q. Chen, J.X. Huang, Q. V. Hu, and L. He, “Position-aware hierarchical transfer model for aspect-level sentiment classification,” Inf. Sci. (Ny). 513, pp. 1–16, 2020, doi: 10.1016/j.ins.2019.11.048.
  22.  A.K. J and S. Abirami, “Aspect-based opinion ranking framework for product reviews using a Spearman’s rank correlation coefficient method,” Inf. Sci. (Ny). 460–461, pp. 23–41, 2018, doi: 10.1016/j.ins.2018.05.003.
  23.  C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn. 20, pp. 273–297, 1995, doi: 10.1109/64.163674.
Przejdź do artykułu

Autorzy i Afiliacje

Nallathambi Balaganesh
1
ORCID: ORCID
K. Muneeswaran
1
ORCID: ORCID

  1. Department of Computer Science & Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamilnadu, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The research was attempted to mimic the locomotion of the salamander, which is found to be one of the main animals from an evolutionary point of view. The design of the limb and body was started with the parametric studies of pneumatic network (Pneu-Net). Pneu-Net is a pneumatically operated soft actuator that bends when compressed fluid is passed inside the chamber. Finite Element Analysis software, ANSYS, was used to evaluate the height of the chamber, number of chambers and the gap between chambers for both limb and body of the soft mechanism. The parameters were decided based on the force generated by the soft actuators. The assembly of the salamander robot was then exported to MATLAB for simulating the locomotion of the robot in a physical environment. Sine-based controller was used to simulate the robot model and the fastest locomotion of the salamander robot was identified at 1 Hz frequency, 0.3 second of signal delay for limb actuator and negative π phase difference for every contralateral side of the limbs. Shin-Etsu KE-1603, a hyper elastic material, was used to build the salamander robot and a series of experiments were conducted to record the bending angle, the respective generated force in soft actuators and the gait speed of the robot. The developed salamander robot was able to walk at 0.06774 m/s, following an almost identical pattern to the simulation.
Przejdź do artykułu

Bibliografia

  1.  A.J. Ijspeert, “Central pattern generators for locomotion control in animals and robots: A review”, Neural Netw. 21, 642–653 (2008).
  2.  K. Karakasiliotis, N. Schilling, J.C. Auke, and J. Ijspeert, “Where are we in understanding salamander locomotion : biological and robotic perspectives on kinematics”, Biol. Cybern. 107, 529–544 (2012).
  3.  J. Cabelguen, C. Bourcier-Lucas, and R. Dubuc, “Bimodal Locomotion Elicited by Electrical Stimulation of the Midbrain in the Salamander Notophthalmus viridescens”, J. Neurosci. 23(6), 2434–2439 (2003).
  4.  J.L. Edwards, “The Evolution of Terrestrial Locomotion”, in Major Patterns in Vertebrate Evolution, pp. 1961–1962, Edition. no 1955, Plenum Press, New York, 1977.
  5.  A. Ross, “Hindlimb Kinematics During Terrestrial Locomotion in a Salamander (Dicamptodon Tenebrosus)”, J. Exp. Biol. 193(1), 255–83 (1994).
  6.  A.J. Ijspeert, G.A. Ascoli, and D.N. Kennedy, “Simulation and Robotics Studies of Salamander Locomotion”, Neuroinformatics 3, 171–195 (2005).
  7.  K. Karakasiliotis and A.J. Ijspeert, “Analysis of the terrestrial locomotion of a salamander robot”, in The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 5015–5020.
  8.  A.J. Ijspeert, A. Crespi, D. Ryczko, and J. Cabelguen, “From Swi mming to Walking with a Spinal Cord Model”, Science 315, 1416–1421 (2007).
  9.  A. Bicanski et al., “Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics”, Biol. Cybern. 107, 545–564 (2013).
  10.  Q. Liu, H. Yang, J. Zhang, and J. Wang, “A new model of the spinal locomotor networks of a salamander and its properties”, Biol. Cybern. 112(4), 369‒385 (2018).
  11.  Q. Liu, Y. Zhang, J. Wang, H. Yang, and L. Hong, “Modeling of the neural mechanism underlying the terrestrial turning of the salamander”, Biol. Cybern. 114, 317–336 (2020).
  12.  C. Zhou, M. Tan, N. Gu, Z. Cao, S. Wang, and L. Wang, “The Design and Implementation of a Biomimetic Robot Fish”, Int. J. Adv. Robot. Syst. 5(2), 185–192 (2008).
  13.  A.A.M. Faudzi, M.R.M. Razif, G. Endo, H. Nabae, and K. Suzumori, “Soft-Amphibious Robot using Thin and Soft McKibben Actuator”, in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, pp. 981–986.
  14.  N. Ili, M.R. Muhammad Razif, A.M. Faudzi, E. Natarajan, K. Iwata, and K. Suzumori, “3-D finite-element analysis of fiber-reinforced soft bending actuator for finger flexion”, 2013 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics Mechatronics Hum. Wellbeing, AIM 2013, 2013, pp. 128–133.
  15.  M.R.M. Razif, A.A.M. Faudzi, M. Bavandi, N.A.M. Nordin, E. Natarajan, and O. Yaakob, “Two chambers soft actuator realizing robotic gymnotiform swi mmers fin”, 2014 IEEE Int. Conf. Robot. Biomimetics, IEEE ROBIO 2014, 2014, pp. 15–20.
  16.  N. Elango and A.A.M. Faudzi, “A review article: investigations on soft materials for soft robot manipulations”, Int. J. Adv. Manuf. Technol. 80, 1027–1037 (2015).
  17.  Y. Nishioka, M. Uesu, H. Tsuboi, S. Kawamura, T. Yasuda, and M. Yamano, “Development of a pneumatic soft actuator with pleated inflatable structures”, Adv. Robot. 31(14), 753–762 (2017).
  18.  Z. Wang, P. Polygerinos, J.T.B. Overvelde, K.C. Galloway, K. Bertoldi, and C.J. Walsh, “Interaction Forces of Soft Fiber Reinforced Bending Actuators”, IEEE/ASME Trans. Mechatron. 22(2), 717–727 (2017).
  19.  A. Ning, M. Li, and J. Zhou, “Modeling and understanding locomotion of pneumatic soft robots”, Soft Mater. 16(3), 151–159 (2018).
  20.  W. Hu, W. Li, and G. Alici, “3D Printed Helical Soft Pneumatic Actuators”, in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 2018, pp. 950–955.
  21.  S. Furukawa, S. Wakimoto, T. Kanda, and H. Hagihara, “A Soft Master-Slave Robot Mimicking Octopus Arm Structure Using Thin Artificial Muscles and Wire Encoders”, Actuators 8(40), 1–13 (2019).
  22.  V. Cacucciolo, J. Shintake, Y. Kuwajima, S. Maeda, D. Floreano, and H. Shea, “Stretchable pumps for soft machines”, Nature 572, 516–519 (2019).
  23.  M.A. Robertson, O.C. Kara, and J. Paik, “Soft pneumatic actuator-driven origami-inspired modular robotic ‘pneumagami’”, Int. J. Robot. Res. 40(1), 72–85 (2020).
  24.  E. Natarajan, “Evaluation of a Suitable Material for Soft Actuator Through Experiments and FE Simulations”, Int. J. Manuf. Mater. Mech. Eng. 10(2), 64–76 (2020).
  25.  B. Mosadegh, P. Polygerinos, Ch. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, and G.M. Whitesides, “Pneumatic Networks for Soft Robotics that Actuate Rapidly”, Adv. Funct. Mater. 2014(24), 2163–2170 (2014).
  26.  T. Wang, L. Ge, and G. Gu, “Progra mmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions”, Sens. Actuator A-Phys. 217, 131–138 (2018).
  27.  P. Boyraz, G. Runge, and A. Raatz, “An Overview of Novel Actuators for Soft Robotics”, Actuators 7(48), 1–21 (2018).
  28.  M. Manns, J. Morales, and P. Frohn, “Additive manufacturing of silicon based PneuNets as soft robotic actuators”, Procedia CIRP 72, 328‒333 (2018).
  29.  Y. Sun, Q. Zhang, X. Chen and H. Chen, “An Optimum Design Method of Pneu-Net Actuators for Trajectory Matching Utilizing a Bending Model and GA”, Math. Probl. Eng. 2019, 6721897 (2019), doi: 10.1155/2019/6721897.
  30.  T. Zielinska, “Autonomous walking machines–discussion of the prototyping problems”, Bull. Pol. Acad. Sci. Tech. Sci. 58(3), 443‒451 (2010), doi: 10.2478/v10175-010-0042-2.
Przejdź do artykułu

Autorzy i Afiliacje

Elango Natarajan
1
ORCID: ORCID
Kwang Y. Chia
1
Ahmad Athif Mohd Faudzi
2
Wei Hong Lim
1
Chun Kit Ang
1
Ali Jafaari
2

  1. Faculty of Engineering, UCSI University, Kuala Lumpur, Malaysia
  2. Center for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia, Kulala Lumpur, Malaysia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article deals with studying the hydrodynamic characteristics of the fluidized bed in gravitation shelf dryers. The algorithm to calculate hydrodynamic characteristics of the fluidized bed in the dryer’s workspace is described. Every block of the algorithm has a primary hydrodynamic characteristics theoretical model of calculation. Principles of disperse phase motion in various areas in the gravitation shelf dryer are established. The software realization of the author’s mathematic model to calculate disperse phase motion trajectory in a free and constrained regime, disperse phase residence time in the dryers’ workspace, polydisperse systems classification is proposed in the study. Calculations of disperse phase motion hydrodynamic characteristics using the software product ANSYS CFX, based on the author’s mathematic model, are presented in the article. The software product enables automating calculation simultaneously by several optimization criteria and visualizing calculation results in the form of 3D images. The disperse phase flow velocity fields are obtained; principles of a wide fraction of the disperse phase distribution in the workspace of the shelf dryer are fixed. The way to define disperse phase residence time91 in the workspace of the shelf dryer in free (without consideration of cooperation with other particles and dryer’s elements) and con-strained motion regimes is proposed in the research. The calculation results make a base for the optimal choice of the gravitation shelf dryer working chamber sizes.
Przejdź do artykułu

Bibliografia

  1.  M. Kwauk, Fluidization: Idealized and bubbleless, with application, Science Press, Beijing, 1992.
  2.  D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions with applications, Academic Press, San Diego, 1994.
  3.  W.-C. Yang, Handbook of fluidizfition and fluid-particle systems, Marcel Dekker, New York, 2003.
  4.  L.G. Gibilaro, Fluidization-dynamics. The formulation and applications of a predictive theory for the fluidized state, Butterworth- Heinemann, Woburn, 2001.
  5.  P. Muralidhar, E. Bhargav, and C. Sowmya, “Novel techniques of granulation: a review”, Int. Res. J. Pharm. 7(10), 8–13 (2016).
  6.  H. Stahl, “Comparing Different Granulation Techniques”, Pharm. Technol. Eur. 16(11), 23–33 (2004).
  7.  D. Parikh, Handbook of Pharmaceutical Granulation Technology, Informa Healthcare, 2009.
  8.  H. Stahl, Comparing Granulation Method, Hürth: GEA Pharma Systems, 2010.
  9.  H.K. Solanki, T. Basuri, J.H. Thakkar, and C.A. Patel, “Recent advances in granulation technology” Int. J. Pharm. Sci. Rev. Res. 5(3), 48–54 (2010).
  10.  S. Srinivasan, “Granulation techniques and technologies: recent progresses”, Bioimpacts 5(1), 55–63 (2015).
  11.  M.A. Saikh, “A technical note on granulation technology: a way to optimize granules”, Int. J. Pharm. Sci. Rev. Res. 4, 55–67 (2013).
  12.  P. Patel, D. Telange, and N. Sharma, “Comparison of Different Granulation Techniques for Lactose Monohydrate”, Int. J. Pharm. Sci. Drug. Res. 3, 222–225 (2011).
  13.  V.A. Kirsanov and M.V. Kirsanov, Effect of Structural Parameters of Cascade Elements on Effectiveness of Pneumatic Classification”, Chem. Pet. Eng. 49, 707–711 (2014).
  14.  V.A. Kirsanov and M.V. Kirsanov, “Hydrodynamic Characteristics of Classification Process in Pneumatic Classifier with Continuous Shelves”, Chem. Pet. Eng. 54, 71–74 (2018).
  15.  M. Yukhymenko, R. Ostroha, A. Lytvynenko, Y. Mikhajlovskiy, and J. Bocko, “Cooling Process Intensification for Granular Mineral Fertilizers in a Multistage Fluidized Bed Device”, Lecture Notes in Mechanical Engineering, pp. 249–257, Springer, Cham, 2020.
  16.  M. Yukhymenko and A. Lytvynenko, “Pneumatic Classification Of The Granular Materials In The “Rhombic” Apparatus”, J. Manuf. Ind. Eng. 1‒2, 1–3 (2014).
  17.  E. Barsky and M. Barsky, “Master curve of separation processes”, Phys. Sep. Sci. Eng. 13(1), 1–13 (2004).
  18.  E. Barsky and M. Barsky. Cascade Separation of Powders, Cambridge Int Science Publishing, 2006.
  19.  А.E. Artyukhov, V.K. Obodiak, P.G. Boiko, and P.C. Rossi, “Computer modeling of hydrodynamic and heat-mass transfer processes in the vortex type granulation devices”, in CEUR Workshop Proceedings, 2017, 1844, pp. 33‒47.
  20.  A.E. Artyukhov and N.A. Artyukhova, “Utilization of dust and ammonia from exhaust gases: new solutions for dryers with different types of fluidized bed”, J. Environ. Health Sci. Eng. 16(2), 193‒204 (2018).
  21.  A. Artyukhov, N.Artyukhova, A. Ivaniia, and R. Galenin, “Progressive equipment for generation of the porous ammonium nitrate with 3D nanostructure”, Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties, NAP 2017, 2017, p. 03NE06.
  22.  A. Artyukhov, N. Artyukhova, J. Krmela, and V. Krmelova, “Complex designing of granulation units with application of computer and software modeling: Case “Vortex granulator”. IOP Conf. Ser.: Mater. Sci. Eng. 776(1), 012016 (2020).
  23.  N.A. Artyukhova, “Multistage finish drying of the N4HNO3 porous granules as a factor for nanoporous structure quality improvement”, J. Nano- Electron. Phys. 10 (3), 03030-1-03030-5 (2018).
  24.  A.E. Artyukhov, N.O. Artyukhova, and A.V. Ivaniia, “Creation of software for constructive calculation of devices with active hydrodynamics”, in Proceedings of the 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET 2018), 2018, pp. 139‒142.
  25.  A.E. Artyukhov, N.A. Artyukhova, A.V. Ivaniia, and J. Gabrusenoks, “Multilayer modified NH4NO3 granules with 3D nanoporous structure: effect of the heat treatment regime on the structure of macro- and mezopores”, in Proc IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF-2017), 2017, pp. 315–318.
  26.  A. Artyukhov, N. Artyukhova, R. Ostroha, M. Yukhymenko, J. Bocko, and J. Krmela, “Convective drying in the multistage shelf dryers: theoretical bases and practical implementation”, in Drying Unit Operations, pp. 140‒163, IntechOpen, UK, 2019.
  27.  A.E. Artyukhov and V.I. Sklabinskiy, “Application of vortex three-phase separators for improving the reliability of pump and compressor stations of hydrocarbon processing plants”, IOP Conf. Ser.: Mater. Sci. Eng. 233(1), 012014 (2017).
  28.  K. Hiltunen, A. Jasberg, S. Kallio, H. Karema, M. Kataja, A. Koponen, M. Manninen, and V. Taivassalo, Multiphase Flow Dynamics: Theory and Numerics, VTT Technical Research Centre of Finland, Edita Prima Oy, 2009.
  29.  C. Crowe, Multiphase flow handbook, Boca Raton, Taylor & Francis Group, 2006.
  30.  D.L. Marchisio and R.O. Fox, Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge Series in Chemical Engineering. Cambridge University Press, 2013.
  31.  D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions with applications, Academic Press, San Diego, 1994.
  32.  E.G. Sinaiski, Hydromechanics: theory and fundamentals, Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, 2010.
  33.  A.E. Artyukhov and N.O. Artyukhova, “Technology and the main technological equipment of the process to obtain NH4NO3 with nanoporous structure”, Springer Proc. Phys. 221, 585–594 (2019).
  34.  K.P. Bowman, J.C. Lin, A. Stohl, R. Draxler, P. Konopka, A. Andrews, and D. Brunner, “Input Data Requirements for Lagrangian Trajectory Models”, Bull. Am. Meteorol. Soc. 94, 1051‒1058 (2013).
  35.  M. Rybalko, E. Loth, and D. Lankford, “A Lagrangian particle random walk model for hybrid RANS/LES turbulent flows”, Powder Technol. 221, 105‒113 (2012).
  36.  A.I. Leont’ev, Yu. A. Kuzma-Kichta, and I. A. Popov, “Heat and mass transfer and hydrodynamics in swirling flows (review)”, Therm. Eng. 64(2), 111‒126 (2017).
  37.  M. Honkanen, Direct optical measurement of fluid dynamics and dispersed phase morphology in multiphase flows, p. 193, PhD. Thesis, Tampere Univetsity of Technology, 2006.
  38.  M.J.V. Goldschmidt, G.G.C. Weijers, R. Boerefijn, and J.A.M Kuipers, “Discrete element modelling of fluidised bed spray granulation”, Powder Technol. 138, 39‒45 (2003).
  39.  M. Khanali, S. Rafiee, A. Jafari, and A. Banisharif, “Study of Residence Time Distribution of Rough Rice in a Plug Flow Fluid Bed Dryer”, Int. J. Adv. Sci. Technol. 48, 103‒114 (2012).
  40.  S. Banerjee and R.K. Agarwal, “Review of recent advances in process modeling and computational fluid dynamics simulation of chemical- looping combustion”, Int. J. Energy Clean Environ. 18(1), 1‒37 (2018).
  41.  Certificate of copyright registration No. 79141UA, UA: Computer program “Multistage fluidizer”, 2018.
  42.  B. Paprocki, A. Pregowska and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 225‒233 (2020), doi: 10.24425/bpasts.2020.131844.
  43.  W. Jefimowski, A. Nikitenko, Z. Drążek, and M. Wieczorek, “Stationary supercapacitor energy storage operation algorithm based on neural network learning system”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 733‒738 (2020), doi: 10.24425/bpasts.2020.134176.
Przejdź do artykułu

Autorzy i Afiliacje

Nadiia Artyukhova
1
Jan Krmela
2
ORCID: ORCID
Vladimíra Krmelová
3
Artem Artyukhov
1
ORCID: ORCID
Mária Gavendová
3

  1. Sumy State University, Oleg Balatskyi Academic and Research Institute of Finance, Economics and Management, Department of Marketing, Rymskogo-Korsakova st. 2, 40007, Sumy, Ukraine
  2. Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, Department of Numerical Methods and Computational Modeling, Ivana Krasku 491/30, 020 01 Púchov, Slovakia
  3. Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, Department of Material Technologies and Environment, Ivana Krasku 491/30, 020 01 Púchov, Slovakia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents and sums up the research and technical aspects of the modernization of the cutting tool of the dredger. Improper adjustment of the cutting elements not adjusted to the characteristics of excavated material is not an uncommon situation, causing versatile geological conditions. Relocation of the machines from one pit to another may result in the significant influence on the excavation process (wear, output, etc.). Common practice is the field try and error approach to obtain desired machine performance. In the paper authors present the approach with aid of cutting-edge technologies. Coupled DEM and kinematic simulations supported by the reverse engineering technologies of laser scanning were the fundamental drivers for final adjustments of the cutting tool at its present operational conditions.
Przejdź do artykułu

Bibliografia

  1.  M. Saga et al., “Experimental Determination of the Manson-Coffin Curves for an Original Unconventional Vehicle Frame”, Materials 13, 4675 (2020), doi: 10.3390/ma13204675.
  2.  J. Dizo et al.,”Development of a New System for Attaching the Wheels of the Front Axle in the Cross-Country Vehicle”, Symmetry-Basel 12, 1156, (2020), doi: 10.3390/sym12071156.
  3.  S. Bosnajk and N. Zrnic, “Dynamics, failures, redesigning and environmentally friendly technologies in surface mining systems”, Arch. Civ. Mech. Eng. 12, 348–359 (2012).
  4.  D. Danicic, S. Sedmak, D. Ignjatovic, and S. Mitrovic, “Bucket wheel excavator damage by fatigue fracture – case study”, Procedia Mater. Sci. 3, 1723‒1728, 2014.
  5.  J. Peng, X. Liquan, L. Zheng, X. Liang, and Y Li, “Analysis on Layered Rock Cutting Process With Cutter Suction Dredger Based On Discrete Element Method”, in E-proceedings of the 38 th IAHR World Congress 09, 2019, doi: 10.3850/38WC092019-0333.
  6.  A. Amiadji, A. Baidowi, and R. Prayogo, “Development of Cutter Head Design in Cutter Suction Dredger with Thickness and Pitch Variation”, Int. J. Mar. Eng. Inn. Res. 3(3), 93‒108 (2019).
  7.  K. Pieczonka, Inżynieria maszyn roboczych. Cz. 1, Podstawy urabiania, jazdy, podnoszenia i obrotu, Wroclaw University of Science and Technology Publishing House, 2009, [in Polish].
  8.  R.N. Bray, A.D. Bates, and J.M. Land, Dredging: A Handbook for Engineers, Butterworth-Heinemann, 1996.
  9.  M. Macko, Z. Szczepański, D. Mikołajewski, E. Mikołajewska, and S. Listopadzki, “The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine”, in Proceedings of the 13th International Scientific Conference. RESRB 2016. Lecture Notes in Mechanical Engineering. Springer, Cham, 2016, doi: 10.1007/978-3-319-50938-9_36.
  10.  J. Andruszko, P. Moczko, and D. Pietrusiak, “The use of numerical methods in cutterhead dredger excavation unit optimization”, in Proc. XXIII International Conference on Material Handling, Construction and Logistics, MHCL 2019, 2019, pp. 141‒146.
  11.  I. Rojek, “Modelowanie i symulacja komputerowa złożonych zagadnień mechaniki nieliniowej metodami elementów skończonych i dyskretnych”, Prace Instytutu Podstawowych Problemów Techniki PAN, pp. 119‒146, 2007 [in Polish].
  12.  A. Danesh, A.A. Mirghaseim, and M. Palassi, “Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM)”, Transport. Geotech. 23, 100357 (2020).
  13.  P. Siemaszko and Z. Meyer, “Static load test curve analysis based on soil field investigations”, Bull. Pol. Acad. Sci. Tech. Sci., 67(2), 329‒337 2019 doi: 10.24425/bpas.2019.128607.
  14.  K. Pieczonka, Maszyny górnicze: Maszyny urabiające i ładujące do podziemnej eksploatacji złóż rud, Wroclaw University of Technology Publishing House, 1981, [in Polish].
  15.  H. Gilvari, W. de Jong, and D.L. Schott, “Breakage behavior of biomass pellets: an experimental and numerical study”, Comp. Part. Mech. 2020, doi: 10.1007/s40571-020-00352-3.
  16.  H. Hertz, “On the contact of rigid elastic solids and on hardness”, Ch 6: Assorted Papers, 1882.
  17.  R.D. Mindlin, “Compliance of Elastic Bodies in Contact”, J. Appl. Mech. 16(3), 259‒268 (1949).
  18.  Y. Tsuji, T. Tanaka, and T. Ishida, “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe”, Powder Technol. 71, 239‒250 (1992).
  19.  P.A. Cundall and O.D.L. Strack, “A discrete numerical model for granular assemblies”, Géotechnique 29, 47‒65 (1979).
  20.  T. Rashi, K. Jeremy, and D. George, “Bucket trajectory classification of mining excavators”, Autom. Constr, 31, 128‒139 (2013).
  21.  S. Blouin, A. Hemami, and M. Lipsett, “Review of resistive force models for earthmoving processes”, J. Aerosp. Eng. 14(3), 102‒111 (2001).
  22.  S.M. Bosnjak, D.C.D. Oguamanam, and N.D. Zrnic, “The influence of constructive parameters on response of bucket wheel excavator superstructure”, Arch. Civ. Mech. Eng. 15(4), 977‒985, 2015.
  23.  E. Rusiński et. al., “Investigations And Modernizations Of Buckets Of Surface Mining Machines”, Eng. Struct. 90, 29‒37 (2015).
  24.  D. Pietrusiak, P. Moczko, and E. Rusiński, “Recent achievements in investigations of dynamics of surface mining heavy machines”, in Proc. 24th World Mining Congress: mining in a world of innovation – proceedings, 2016, pp. 295‒308.
  25.  J. Czmochowski, P. Moczko, D. Pietrusiak, G. Przybyłek, and E. Rusiński, “Selected Aspects of Technical Condition State Assessment of Spreaders Operating in Lignite Mines”, in Proc. Proceedings of the 13th International Scientific Conference Computer Aided Engineering, 2016, pp. 89‒98.
  26.  E. Rusiński and J. Czmochowski, T. Smolnicki, Zaawansowana metoda elementów skończonych w konstrukcjach nośnych, Wroclaw University of Science and Technology Publishing House, 2000, [in Polish].
Przejdź do artykułu

Autorzy i Afiliacje

Jakub Andruszko
1
Przemyslaw Moczko
1
Damian Pietrusiak
1

  1. Department of Machine Design and Research, Wroclaw University of Science and Technology, ul. Ignacego Lukasiewicza 7/9, 50-371 Wroclaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Boron nitride (BN) reinforced Al6061 aluminum-based composites are synthesized by conventional stir casting method followed by exposure to hot extrusion. The optical images confirmed the distribution of BN nanoparticles in the aluminum alloy matrix. The concentration of BN is varied from (0.5, 1.5, 3, 4.5, 6, 7.5, and 9 wt%) in the composites and its effect on the tensile strength was investigated. The results revealed that both extruded and heat-treated composites specimens showed enhanced toughness and tensile strength by increasing BN nanoparticle concentration. The heat-treated composite samples showed lower flexibility of up to 40%, and further, it exhibited 37% greater hardness and 32% enhancement in tensile strength over the extruded sample. The tensile properties of Al6061-BN composites were evaluated by temperature-dependent internal friction (TDIF) analysis and the results showed that the as-prepared composite's strength increased with temperature.
Przejdź do artykułu

Bibliografia

  1.  N.A. Patil, S.R. Pedapati, and O.B. Mamat, “A review on aluminum hybrid surface composite fabrication using friction stir processing”, Arch. Metall. Mater. 65, 441–457 (2020).
  2.  P.A. Kumar, P. Rohatgi, and D. Weiss, “50 years of foundryproduced metal matrix composites and future opportunities”, Inter Metalcast. 14, 291–317 (2020).
  3.  T. Mythili and R. Thanigaivelan, “Optimization of wire EDM process parameters on Al6061/Al2O3 composite and its surface integrity studies”, Bull. Pol. Acad. Sci. Tech. Sci. 68(6), 1403–1412 (2020).
  4.  J. Satheeshkumar, M. Jayaraman, G.S. Priyadharshini, and C.S.S. Mukesh, “Fabrication of aluminum – Cr3C2 surface composites through friction stir processing and analyzing its microstructural and mechanical evolution”, Arch. Metall. Mater. 64, 1527–1532 (2019).
  5.  M. Wachowski, W. Kaszuwara, A. Miazga, K. Konorpa, and J. Zygmuntowicz, “The possibility of producing graded Al2O3-Mo, Al2O3-Cu, Al2O3-W composites using CSC method”, Bull. Pol. Acad. Sci. Tech. Sci. 67, 179–184 (2019).
  6.  T. Velmurugan, R. Subramanian, G. Sugunya Priyadharshini, and R. Raghu, “Experimenetal investigation of microstructure, mechanical and wear characteristics of Cu-Ni/ZrC composites synthesized through friction stir processing”, Arch. Metall. Mater. 2, 565–574 (2020).
  7.  P. Radha, N. Selvakumar, and R. Harichandran, “Computational intelligence for analyzing the mechanical properties of AA2219- (B4C- H-BN) hybrid nanocomposites processed by ultrasoundassisted casting”, Arch. Metall. Mater. 64, 1163–1173 (2019).
  8.  C. Chen, L. Guo, J. Luo, J. Hao, Z. Guo, and A.A. Volinsky, “Aluminum powder size and microstructure effects on properties of boron nitride reinforced aluminum matrix composites fabricated by semi-solid powder metallurgy”, Mater. Sci. Eng. A 646, 306–314 (2015).
  9.  N. Chawla, and Y.L. Shen, “Mechanical behavior of particle reinforced metal matrix composites”, Adv. Eng. Mater. 3, 357–370 (2001).
  10.  A. Lotfy, A.V. Pozdniakov, V.S. Zolotorevskiy, M.T. Abou El- Khair, A. Daoud, and A.G. Mouchugovskiy, “Novel preparation of Al-5%Cu/ BN and Si3N4 composites with analyzing microstructure, thermal and mechanical properties”, Mater. Charact. 136, 144–151 (2018).
  11.  R. Arunachalam, P.K. Krishnan, R. Muraliraja, “A review on the production of metal matrix composites through stir casting – Furnance design, properties, challenges, and research opportunities”, J. Manuf. Process. 42, 213–245 (2019).
  12.  G. Samtaş, and S. Korucu, “Optimization of cutting parameters in pocket milling of tempered and cryogenically treated 5754 aluminum alloy”, Bull. Pol. Acad. Sci. Tech. Sci. 67, 697–707 (2019).
  13.  M.K. Pireyousefan, R. Rahmanifard, L. Orovcik, P. Švec, V. Klemm, “Application of a novel method for the fabrication of graphene reinforced aluminum matrix nanocomposites: Synthesis, microstructure, and mechanical properties”, Mater. Sci. Eng. A, 772, 138820 (2020).
  14.  B. Gopalakrishnan, P.R. Lakshminarayanan, and R. Varahamoorthi, “Combined effect of TiB2 particle addition and heat treatment on mechanical properties of Al6061/TiB2 in-situ formed MMCs”, J. Adv. Microsc. Res. 12, 230–235 (2017).
  15.  M.M. Khan, and G. Dixit, “Erosive wear response of SiCp reinforced aluminum-based metal matrix composite: Effects of test environments”, J. Mech, Eng. Sci. 14, 2401–2414 (2017).
  16.  R. Jeya Raj, Lenin W.A, Anselm, M. Jinnah Sheik Mohamed, S. Christopher Ezhil Singh, T.D. John, D. Rajeev, G. Glan Devadhas, K.G. Jaya Christyan, R. Malkiya Rasalin Prince, and R.B. Jeen Robert, “Optimization on friction and wear behaviour of Al-Si alloy reinforced with B4C particles by Powder Metallurgy using Taguchi design”, Bull. Pol. Acad. Sci. Tech. Sci. 68(6), 1393‒1402, (2020).
  17.  N. Berndt, P. Frint, and M.F.X. Wagner, “Influence of extrusion temperature on the ageing behavior and mechanical properties of an AA6060 aluminum alloy”, Metals. 8(1), 51 (2018).
  18.  K.L. Firestein, S. Corthay, A.E. Steinman, A.T. Matveev, A.M. Kovalskii, I.V. Sukhorukova, D. Golberg, and D.V. Shtansky, “High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures”, Mater. Sci. Eng. A 681, 1‒9 (2017).
  19.  N. Gangil, A.N. Siddiquee, S. Maheshwari, A.M. Al-Ahmari, and M.H. Abidi, “State of the art of ex-situ aluminum matrix composites fabrication through friction stir processing”, Arch. Metall. Mater. 63, 719‒738 (2018).
  20.  C.R. Barbosa, G.H. Machado, H.M. Azevedo, F.S. Rocha, J.C. Filho, A.A. Pereira, and O.L. Rocha, “Tailoring of processing parameters, dendritic microstructure, Si/intermetallic particles and microhardness in As-cast and heat-treated samples of Al7Si0.3Mg alloy”, Met. Mater. Int. 26, 370‒383 (2020).
  21.  G. Bajpai, R. Purohit, R.S. Rana, S.S. Rajpurohit, and A. Rana, “Investigation and testing of mechanical properties of Al-nano SiC composites through cold isostatic compaction process”, Process. Mater. Today: Proc. 4, 2723‒2732 (2017).
  22.  N.A. Singh, “A brief introduction of aluminum metal matrix composites”, J. Met. Mater. Sc. 61, 161‒184 (2019).
  23.  A. Fallahi, H.H. Toudeshky, and S.M. Ghalehbandi, “Effect of heat treatment on mechanical properties of ECAPed 7075 aluminum alloy”, Adv. Mat. Res. 829, 62‒66 (2013).
  24.  C.W. Shao, S. Zhao, X.G. Wang, Y.Zhu, Z.F. Zhang, and R.O. Ritchie, “Architecture of high-strength aluminum-matrix composites processed by a novel micro casting technique”, NPG Asia Mater. 11, 69 (2019).
  25.  S. Gopinath, M. Prince, and G.R. Raghav, “Enhancing the mechanical, wear and corrosion behavior of stir casted aluminum 6061 hybrid composites through the incorporation of boron nitride and aluminum oxide particles”, Mater. Res. Express.7, 016582 (2020).
  26.  A. Gloria, R. Montanari, M. Richetta, and A. Varone, “Alloys for aeronautic applications: State of the art and perspectives”, Metals 9(6), 662 (2019).
  27.  C.S. Ramesh, R. Keshavamurthy, P.G. Koppad, and K. Kashyap, “Role of particle stimulated nucleation in recrystallization of hot extruded Al 6061/SiCp composites”, Trans. Nonferrous. Met. Soc. China 23, 53‒58 (2013).
  28.  V.M.R. Muthaiah, S.R. Meka, and B.V.M. Kumar, “Processing of heat-treated silicon carbide – reinforced aluminum alloy composites”, Meter. Manuf. Process. 34(3), 320‒321 (2019).
  29.  H. Alrobei, “Effect of different parameters and ageing time on wear resistance and hardness of SiC-B4C reinforced AA6061 alloy”, J. Mech. Sci. Technol. 34, 2027‒2034 (2020).
Przejdź do artykułu

Autorzy i Afiliacje

Y.B. Mukesh
1
Prem Kumar Naik
2
Raghavendra Rao R
3
N.R. Vishwanatha
4
N.S. Prema
5
H.N. Girish
6
Naik L. Laxmana
3
Puttaswamy Madhusudan
7 8
ORCID: ORCID

  1. Department of Mechanical Engineering, Chaitanya Bharathi Institute of Technology, Proddatur, Andhra Pradesh, India
  2. Department of Mechanical Engineering, AMC Engineering College, Bengaluru, India
  3. Department of Mechanical Engineering, Malnad College of Engineering, Hassan, India
  4. Department of Mechanical Engineering, Navkis College of Engineering, Hassan, India
  5. Department of Information Science and Engineering, Vidyavardhaka College of Engineering, Mysore, India
  6. Department of Studies in Earth Science, University of Mysore, 570006, India
  7. Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
  8. Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents the results of research on the influence of the parameters of Fused Deposition Modelling (FDM) on the mechanical properties and geometric accuracy of angle-shaped parts. The samples were manufactured from acrylonitrile butadiene styrene (ABS) on a universal machine. A complete factorial experiment was conducted. The results indicated that the critical technological parameter was the angular orientation of the sample in the working chamber of the machine. The results were compared with the results of research performed on simple rectangular samples. A significant similarity was found in the relationships between the FDM parameters and properties for both sample types.
Przejdź do artykułu

Bibliografia

  1.  T. Kudasik and S. Miechowicz, “Methods of reconstructing complex multi-structural anatomical objects with RP techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 315‒323 (2016), doi: 10.1515/bpasts-2016-0036.
  2.  O. Ivanova, C. Williams, and T. Campbell, “Additive manufacturing (AM) and nanotechnology, promises and challenges”, Rapid Prototyp. J. 19, 353‒364 (2013), doi: 10.1108/RPJ-12-2011-0127.
  3.  J. Safka, M. Ackermann, and D. Martis, “Chemical resistance of materials used in additive manufacturing”, MM Sci. J. 2016, 1573‒1578 (2016), doi: 10.17973/MMSJ.2016_12_2016185.
  4.  R.I. Campbell, D. Bourell, and I. Gibson, “Additive manufacturing, rapid Prototyp. comes of age”, Rapid Prototyp. J. 18, 255‒258 (2012), doi: 10.1108/13552541211231563.
  5.  T. Kudasik, M. Libura, O. Markowska, and S. Miechowicz, “Methods for designing and fabrication large-size medical models for orthopaedics”, Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 623‒627 (2015), doi: 10.1515/bpasts-2015-0073.
  6.  G.N. Levy, R. Schindel, and J.P. Kruth, “Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives”, CIRP Ann. 52, 589‒609 (2003), doi: 10.1016/S0007-8506(07)60206-6.
  7.  D. Croccolo, M. De Agostinis, and G. Olmi, “Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30”, Comput. Mater. Sci. 79, 506–518 (2013), doi: 10.1016/j.commatsci.2013.06.041.
  8.  S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing”, Chem Rev. 117, 10212‒10290 (2017), doi: 10.1021/acs.chemrev.7b00074.
  9.  I. Rojek, D. Mikołajewski, P. Kotlarz, M. Macko, and J. Kopowski, “Intelligent System Supporting Technological Process Planning for Machining and 3D Printing”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136722 (2021), doi: 10.24425/bpasts.2021.136722.
  10.  D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, “FDM process parameters influence over the mechanical properties of polymer specimens, A review”, Polym. Test. 69, 157‒166 (2018), doi: 10.1016/j.polymertesting.2018.05.020.
  11.  M. Montero, R. Shad, D. Odell, S.H. Ahn, and P.K. Wright, “Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments”, Soc. Manuf. Eng. 10, 1‒21 (2001).
  12.  H.C. Song, N. Ray, D. Sokolov, and S. Lefebvre, “Anti-aliasing for fused filament deposition. Comput”, Aided Des. 89, 25‒34 (2017), doi: 10.1016/j.cad.2017.04.001.
  13.  S.H. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, “Anisotropic material properties of fused deposition modeling ABS”, Rapid Prototyp. J. 8, 248‒257 (2002), doi: 10.1108/13552540210441166.
  14.  C. Casavola, A. Cazzato, V. Moramarco, and C. Pappalettere, “Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory”, Mater. Des. 90, 453‒458 (2016), doi: 10.1016/j.matdes.2015.11.009.
  15.  O.A. Mohamed, S.H. Masood, J.L. Bhowmik, M. Nikzad, and J. Azadmanjiri, “Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment”, J. Mater. Eng. Perform. 25, 2922–2935 (2016), doi: 10.1007/ s11665-016-2157-6.
  16.  A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Mater. Des. 31, 287–295 (2010), doi: 10.1016/j.matdes.2009.06.016.
  17.  G.C. Onwubolu and F. Rayegani, “Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process”, Int. J. Manuf. Eng. 2014, 598531 (2014), doi: 10.1155/2014/598531.
  18.  M. Spoerk, F. Arbeiter, H. Cajner, J. Sapkota, and C. Holzer, “Parametric optimization of intra and interlayer strengths in parts produced by extrusion based additive manufacturing of poly(lactic acid)”, J. Appl. Polym. Sci. 134, 45401 (2017), doi: 10.1002/app.45401.
  19.  A. Peng, X. Xiao, and R. Yue, “Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system”, Int. J. Adv. Manuf. Technol. 73, 87‒100 (2014), doi: 10.1007/s00170-014-5796-5.
  20.  G. Papazetis, G.C. Vosniakos, “Mapping of deposition-stable and defect-free additive manufacturing via material extrusion from minimal experiments”, Int. J. Adv. Manuf. Technol. 100, 2207‒2219 (2019), doi: 10.1007/s00170-018-2820-1.
  21.  S. Mahmood, A.J. Qureshi, K.L. Goh, and D. Talamona, “Tensile strength of partially filled FFF printed parts, experimental results”, Rapid Prototyp. J. 23, 122‒128 (2017), doi: 10.1108/RPJ-08-2015-0115.
  22.  S. Abid et al., “Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design”, Int. J. Adv. Manuf. Technol. 100, 1363‒1372 (2019), doi: 10.1007/s00170-018-2710-6.
  23.  V.E. Kuznetsov, A.N. Solonin, O.D. Urzhumtsev, R. Schilling, and A.G Tavitov, “Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process”, Polymers 10, 1‒16 (2018), doi: 10.3390/polym10030313.
  24.  L. Yang, S. Li, Y. Li, and Y. Mingshun, “Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts”, J. Mater. Eng. Perform. 28, 169‒182 (2019), doi: 10.1007/s11665-018-3784-x.
  25.  J.T. Belter and A.M. Dollar, “Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique”, PloS One 10(4) (2015), doi: 10.1371/journal.pone.0122915.
  26.  J.A. Gopsill, J. Shindler, and B.J. Hicks, “Using finite element analysis to influence the infill design of fused deposition modelled parts”, Prog. Addit. Manuf. 3, 145‒163 (2018), doi: 10.1007/s40964-017-0034-y.
  27.  G.A.M. Capote, N.M. Rudolph, P.V. Osswald, and A.T. Osswald, “Failure surface development for ABS fused filament fabrication parts”, Addit. Manuf. 28, 169‒175 (2019), doi: 10.1016/j.addma.2019.05.005.
  28.  F. Gorski, R. Wichniarek, W. Kuczko, and A. Hamrol, “Selection of Fused Deposition Modeling Process Parameters using Finite Element Analysis and Genetic Algorithms”, J. Mult.-Valued Logic Soft Comput. 32, 293‒311 (2019).
Przejdź do artykułu

Autorzy i Afiliacje

Wiesław Kuczko
1
ORCID: ORCID
Adam Hamrol
1
ORCID: ORCID
Radosław Wichniarek
1
ORCID: ORCID
Filip Górski
1
ORCID: ORCID
Michał Rogalewicz
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 61-138 Poznan, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Bridge inspections are a vital part of bridge maintenance and the main information source for Bridge Management Systems is used in decision-making regarding repairs. Without a doubt, both can benefit from the implementation of the Building Information Modelling philosophy. To fully harness the BIM potential in this area, we have to develop tools that will provide inspection accurate information easily and fast. In this paper, we present an example of how such a tool can utilise tablets coupled with the latest generation RGB-D cameras for data acquisition; how these data can be processed to extract the defect surface area and create a 3D representation, and finally embed this information into the BIM model. Additionally, the study of depth sensor accuracy is presented along with surface area accuracy tests and an exemplary inspection of a bridge pillar column.
Przejdź do artykułu

Bibliografia

  1.  J.S. Kong and D.M. Frangopol, “Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges”, J. Struct. Eng. 129(6), 818–828 (2003).
  2.  B.M. Phares, G.A. Washer, D.D. Rolander, B.A. Graybeal, and M. Moore, “Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability”, J. Bridg. Eng. 9(4), 403–413 (2004).
  3.  A. Costin, A. Adibfar, H. Hu, and S.S. Chen, “Building Information Modeling (BIM) for transportation infrastructure – Literature review, applications, challenges, and recommendations”, Autom. Constr. 94, 257–281 (2018).
  4.  “SeeBridge”. [Online]. Available: https://seebridge.net.technion.ac.il/.
  5.  R. Sacks et al., “SeeBridge as next generation bridge inspection: Overview, Information Delivery Manual and Model View Definition”, Autom. Constr. 90, 134–145 (2018).
  6.  P. Hüthwohl, I. Brilakis, A. Borrmann, and R. Sacks, “Integrating RC Bridge Defect Information into BIM Models”, J. Comput. Civ. Eng. 32(3), (2018).
  7.  P. Hüthwohl and I. Brilakis, “Detecting healthy concrete surfaces”, Adv. Eng. Informatics 37, 150–162 (2018).
  8.  P. Hüthwohl, R. Lu, and I. Brilakis, “Multi-classifier for reinforced concrete bridge defects”, Autom. Constr. 105, 102824 (2019).
  9.  R. Lu, I. Brilakis and C. R. Middleton, “Detection of Structural Components in Point Clouds of Existing RC Bridges”, Comput. Civ. Infrastruct. Eng. 34(3), 191–212 (2019).
  10.  R. Lu and I. Brilakis, “Digital twinning of existing reinforced concrete bridges from labelled point clusters”, Autom. Constr. 105, 102837 (2019).
  11.  D. Isailović, V. Stojanovic, M. Trapp, R. Richter, R. Hajdin, and J. Döllner, “Bridge damage: Detection, IFC-based semantic enrichment and visualization”, Autom. Constr. 112, 103088 (2020).
  12.  C.S. Shim, H. Kang, N.S. Dang, and D. Lee, “Development of BIM-based bridge maintenance system for cable-stayed bridges”, Smart Struct. Syst. 20(6), 697–708 (2017).
  13.  N.S. Dang and C.S. Shim, “BIM authoring for an image-based bridge maintenance system of existing cable-supported bridges”, IOP Conf. Ser. Earth Environ. Sci. 143(1), 012032 (2018).
  14.  S. Dang, H. Kang, S. Lon, and S. Changsu, “3D Digital Twin Models for Bridge Maintenance”, 10th Int. Conf. Short Mediu. Span Bridg., 2018, pp. 73.1‒73.9.
  15.  C.S. Shim, N.S. Dang, S. Lon, and C.H. Jeon, “Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model”, Struct. Infrastruct. Eng. 15(10), 1319–1332 (2019).
  16.  Z. Ma and S. Liu, “A review of 3D reconstruction techniques in civil engineering and their applications”, Adv. Eng. Informatics 37, 163–174 (2018).
  17.  Q. Wang and M.K. Kim, “Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018”, Adv. Eng. Informatics 39, 306–319 (2019).
  18.  C. Popescu, B. Täljsten, T. Blanksvärd, and L. Elfgren, “3D reconstruction of existing concrete bridges using optical methods”, Struct. Infrastruct. Eng. 15(7), 912–924 (2019).
  19.  S. Izadi et al., “KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera”, in Proceedings of the 24th annual ACM symposium on User interface software and technology – UIST ’11, 2011, p. 559.
  20.  J. Hoła, J. Bień, Ł. Sadowski, and K. Schabowicz, “Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability”, Bull. Polish Acad. Sci. Tech. Sci. 63(1), 87–96 (2015).
  21.  J. Bień, T. Kamiński, and M. Kużawa, “Taxonomy of non-destructive field tests of bridge materials and structures”, Arch. Civ. Mech. Eng. 19(4), 1353–1367 (2019).
  22.  J. Bień, M. Kużawa, and T. Kamiński, “Strategies and tools for the monitoring of concrete bridges”, Struct. Concr. 21(4), 1227–1239 (2020).
  23.  “OpenCV AI Kit”. [Online]. Available: https://www.kickstarter.com/projects/opencv/opencv-ai-kit.
  24.  B. Liu, H. Cai, Z. Ju, and H. Liu, “RGB-D sensing based human action and interaction analysis: A survey”, Pattern Recognit. 94, 1–12 (2019).
  25.  Y.-D. Hong, Y.-J. Kim, and K.-B. Lee, “Smart Pack: Online Autonomous Object-Packing System Using RGB-D Sensor Data”, Sensors 20(16), 4448 (2020).
  26.  M.R. Jahanshahi, F. Jazizadeh, S.F. Masri, and B. Becerik-Gerber, “Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor”, J. Comput. Civ. Eng. 27(6), 743–754 (2013).
  27.  D. Roca, S. Lagüela, L. Díaz-Vilariño, J. Armesto, and P. Arias, “Low-cost aerial unit for outdoor inspection of building façades”, Autom. Constr. 36, 128–135 (2013).
  28.  C. Bellés and F. Pla, “A Kinect-Based System for 3D Reconstruction of Sewer Manholes”, Comput. Civ. Infrastruct. Eng. 30(11), 906–917 (Nov. 2015).
  29.  M. Abdelbarr, Y.L. Chen, M.R. Jahanshahi, S.F. Masri, W.M. Shen, and U.A. Qidwai, “3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor”, Smart Mater. Struct. 26(12) (2017).
  30.  Z. Xu, S. Li, H. Li, and Q. Li, “Modeling and problem solving of building defects using point clouds and enhanced case-based reasoning”, Automation in Construction 96(February), 40–54 (2018).
  31.  M. Nahangi, T. Czerniawski, C.T. Haas, and S. Walbridge, “Pipe radius estimation using Kinect range cameras”, Autom. Constr. 99 (March 2017), 197–205 (2019).
  32.  G.H. Beckman, D. Polyzois, and Y.J. Cha, “Deep learning-based automatic volumetric damage quantification using depth camera”, Automation in Construction 99(November 2018), 114–124 (2019).
  33.  H. Kim, S. Lee, E. Ahn, M. Shin, and S.-H. Sim, “Crack identification method for concrete structures considering angle of view using RGB-D camera-based sensor fusion”, Struct. Heal. Monit., 1–13 (2020).
  34.  Intel, “Intel® RealSenseTM Camera D400 series Product Family Datasheet” (2019).
  35.  C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’: interactive foreground extraction using iterated graph cuts”, in ACM SIGGRAPH 2004 Papers on – SIGGRAPH ’04, 2004, p. 309.
  36.  Y. Li, J. Sun, C.K. Tang, and H.Y. Shum, “Lazy snapping”, ACM SIGGRAPH 2004 Pap. SIGGRAPH 2004, 303–308 (2004).
  37.  M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models”, Int. J. Comput. Vis. 1(4), 321–331 (Jan. 1988).
  38.  M.A. Fischler and R.C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Commun. ACM 24(6), 381–395 (1981).
  39.  D. Holz and S. Behnke, “Fast Range Image Segmentation and Smoothing Using Approximate Surface Reconstruction and Region Growing”, 2013, 61–73.
  40.  M. Garland and P.S. Heckbert, “Surface simplification using quadric error metrics”, in Proceedings of the 24th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’97, 1997, 209–216.
  41.  Intel, “Intel® RealSenseTM Camera: Depth testing methodology”, 2018.
  42.  B. Wójcik and M. Żarski, “Asesment of state-of-the-art methods for bridge inspection: case study”, Arch. Civ. Eng. 66(4), 343‒362 (2020).
  43.  K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN”, IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2017).
Przejdź do artykułu

Autorzy i Afiliacje

Bartosz Wójcik
1
ORCID: ORCID
Mateusz Żarski
1
ORCID: ORCID

  1. Department of Mechanics and Bridges, Faculty of Civil Engendering, Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper presents a new approach to the design methodology of road routes, in literature often referred to as the polynomial alignment. The author proposes the use of the so-called general transition curves that have been described in detail in his earlier research papers. General transition curves employ only one curvature extremum, and the whole curved transition between two extreme points of zero curvature value is described by a single equation. As a result, the curves are very useful for the creation of route geometry in accordance with the principles of polynomial alignment. The paper describes the main concept of polynomial alignment and presents equations of curves which can be used in the proposed alignment procedure. In addition, the paper gives a detailed description of design procedures.
Przejdź do artykułu

Bibliografia

  1.  P. Żabicki and W. Gardziejczyk, “Multicriteria analysis in planning roads – Part 1. Criteria in determining the alignment of regional roads”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 345‒350 (2020).
  2.  E.P. Chew, C.J. Goh, and T.F. Fwa, “Simultaneous optimization of horizontal and vertical alignments for highways”, Transp. Res. Part B 23(5), 315‒329 (1989).
  3.  W.L. Hare, V.R.. Koch, and Y. Lucet, “Models and algorithms to improve earthwork operations in road design using mixed integer linear programming”, Eur. J. Oper. Res 215(2), 470‒480 (2011).
  4.  D. Hirpa, W.L. Hare, Y. Lucet, Y. Pushak, and S. Tesfamariam, “A bi-objective optimization framework for three-dimensional road alignment design”, Transp. Res. Part C 65, 61‒78 (2016).
  5.  M.K. Jha and P. Schonfeld, “A highway alignment optimization model using geographic information systems”, Transp. Res. Part A 38(6), 455‒481 (2004).
  6.  J.C. Jong and P. Schonfeld, “An evolutionary model for simultaneously optimizing three-dimensional highway alignments”, Transp. Res. Part B 37(2), 107‒128 (2003).
  7.  M.W. Kang, M.K. Jha, and P. Schonfeld, “Applicability of highway alignment optimization models”, Transp. Res. Part C 21(1), 257‒286 (2012).
  8.  A.R. Ghanizadeh and N.Heidarabadizadeh, ”Optimization of vertical alignment of highways in terms of earthwork cost using colliding bodies optimization algorithm”, Int. J. Opt. Civ. Eng. 8(4), 657‒674 (2018).
  9.  C.J. Goh, E.P. Chew, and T.F. Fwa, “Discrete and continuous models for computation of optimal vertical highway alignment. Transp. Res. Part B 22(6), 399‒409 (1988).
  10.  W. Hare, S. Hossain, Y. Lucet, and F. Rahman, “Models and strategies for efficiently determining an optimal vertical alignment of roads”, Comp. Operat. Res. 44, 161‒173 (2014).
  11.  W. Hare, Y. Lucet, and F. Rahman, “A mixed-integer linear programming model to optimize the vertical alignment considering blocks and side-slopes in road construction”, Eur. J. Oper. Res. 241(3), 631‒641 (2014).
  12.  A. Kobryń, “Optimization of vertical alignment using general transition curves”, KSCE J. Civ. Eng. 22, 2549‒2559 (2018).
  13.  V.R. Koch and Y. Lucet, “A note on: Spline technique for modeling roadway profile to minimize earthwork cost”, J. Industr. Manag. Opt. 6(2), 393‒400 (2010).
  14.  Y.S. Lee and J.F. Cheng, “Optimizing highway grades to minimize cost and maintain traffic speed”, J. Transp. Eng. 127(4), 303‒310 (2001).
  15.  Y.S. Lee and J.F. Cheng, “A model for calculating optimal vertical alignments of interchanges”, Transp. Res. Part B 35(5), 423‒445 (2001).
  16.  A.A. Moreb, “Linear programming model for finding optimal roadway grades that minimize earthwork cost”, Eur. J. Oper. Res. 93(1), 148‒154 (1996).
  17.  A.A. Moreb, “Spline technique for modeling roadway profile to minimize earthwork cost”, J. Industr. Manag. Opt. 5(2), 275‒283 (2009).
  18.  V. Calogero, “A new method in road design – polynomial alignment”, Comput. Aided Des. 1(2), 19‒29 (1969).
  19.  G. Cantisani, D. Dondi, G. Loprencipe, and A. Ranzo, “Spline curves for geometric modeling of highway design”, Proc., 2nd Int. Congress New Technologies and Modelling Tools for Road Applications to Design and Management, Societe Italiana di Infrastrutture Viarie, Ancona, Italy, 2004.
  20.  S.M. Easa and A. Mehmood, “Optimizing design of highway horizontal alignments: new substantive safety approach”, Comput. Aided Civ. Infrastruct. Eng. 23(7), 560‒573 (2008).
  21.  S. Mondal, Y. Lucet, and W. Hare, “Optimizing horizontal alignment of roads in a specified corridor”, Comput. Oper. Res. 64, 130‒138 (2015).
  22.  Y. Shafahi and M. Bagherian, “A customized particle swarm method to solve highway alignment optimization problem”, Comput. Aided Civ. Infrastruct. Eng. 28(1), 52‒67 (2013).
  23.  M.E. Vázquez-Méndez, G. Casal, D. Santamarina, and A. Castro, “A 3D model for optimizing infrastructure costs in road design”, Comput. Aided Civ. Infrastruct. Eng. 33(5), 423‒439 (2018).
  24.  M.B. Sushma and A. Maji, “A modified motion planning algorithm for horizontal highway alignment development”, Comput. Aided Civ. Infrastruct. Eng. 35(8), 818–831 (2020).
  25.  G. Casal, D. Santamarina and M.E. Vázquez-Méndez, “Optimization of horizontal alignment geometry in road design and reconstruction”, Transp. Res. Part C, 74, 261‒274 (2017).
  26.  Y. Pushak, W. Hare, and Y. Lucet, “Multiple-path selection for new highway alignments using discrete algorithms”, Eur. J. of Oper. Res. 248, 415‒427 (2016).
  27.  G. Bosurgi and A. D’Andrea, “A polynomial parametric curve (PPC-CURVE) for the design of horizontal geometry of highways”, Comp. Aided Civ. Infrastruct. Eng. 27(4), 303‒312 (2012).
  28.  G. Bosurgi, O. Pellegrino, and G. Sollazzo, “Using genetic algorithms for optimizing the PPC in the highway horizontal alignment design”, J. Comput. Civil Eng. 30(1), 04014114 (2014).
  29.  M.W. Kang and P. Schonfeld, “Artificial Intelligence in Highway Location and Alignment Optimization”, World Scientific Publishing Co., 2020.
  30.  M.K. Jha, C. McCall, and P. Schonfeld, “Using GIS, genetic algorithms, and visualization in highway development”, Comput. Aided Civ. Infrastruct. Eng. 16(6), 399‒414 (2001).
  31.  S. Dinu and G. Bordea, “A new genetic approach for transport network design and optimization”, Bull. Pol. Acad. Sci. Tech. Sci. 59(3), 263‒272 (2011).
  32.  P. Żabicki and W.Gardziejczyk, “Multicriteria analysis in planning roads – Part 2. Methodology for selecting the optimal variant of the road”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 351‒360 (2020).
  33.  M. Velasquez and P.T. Hester, “An analysis of multi-criteria decision making methods”, Int. J. Oper. Res. 10(2), 56‒66 (2013).
  34.  J.H. Dahooiea, A.S. Vanakib, N. Mohammadic, and H.R. Firoozfard, “Selection of optimal variant route based on dynamic fuzzy GRA”, Decis. Sci. Lett. 7, 523‒534 (2018).
  35.  W. Li, H. Pu, P. Schonfeld, J. Yang, H. Zhang, L. Wang, and J. Xiong, “Mountain railway alignment optimization with bidirectional distance transform and genetic algorithm”, Comput. Aided Civ. Infrastruct. Eng. 32(8), 691‒709 (2017).
  36.  H. Pu, T. Song, P. Schonfeld, W. Li, H. Zhang, J. Wang, J. Hu, and X. Peng, “A three-dimensional distance transform for optimizing constrained mountain railway alignments”, Comput. Aided Civ. Infrastruct. Eng. 34(11), 972‒990 (2019).
  37.  T. Song, H. Pu, P. Schonfeld, H. Zhang, W. Li, J. Hu, and J. Wang, “Mountain railway alignment optimization considering geological impacts: A cost-hazard bi-objective model”, Comput. Aided Civ. Infrastruct. Eng. 35(12), 1365‒1386 (2020).
  38.  T. Song, H. Pu, P. Schonfeld, H. Zhang, W. Li, J. Hu, and J. Wang, “Bi-objective mountain railway alignment optimization incorporating seismic risk assessment”, Comput. Aided Civ. Infrastruct. Eng. 36(2). 143‒163 (2021).
  39.  M.E. Vázquez-Méndez, G. Casal, A. Castro, and D. Santamarina, “Optimization of an urban railway bypass. A case study in A Coruña- Lugo line, Northwest of Spain”, Comput. .Ind. Eng. 151, 106935 (2021).
  40.  A. Kobryń, “Polynomial solutions of transition curves”, J. Surv. Eng. 137(3), 71‒80 (2011).
  41.  A. Kobryń, “New solutions for general transition curves”, J. Surv. Eng. 140(1), 12‒21 (2014).
  42.  A. Kobryń, “Transition curves for highway geometric design”. Springer Tracts on Transportation and Traffic, Vol. 14, Springer International Publishing, Cham, Switzerland, 2017.
  43.  A.G. Fulczyk, “Trassenausgleich nach Spline-Algorithmen (TRANSA)”, Die Straße, 17(2), 65‒67 (1977) [in German].
  44.  W. Kühn, “Anwendung verallgemeinerter kubischer Spline-Funktionen für Achsberechnung von Straßen”, Die Straße, 23(2), 9‒13 (1983) [in German].
  45.  W. Kühn, “Entwurfstechnische Parameter und Kontrollgrößen zur Beurteilung einer polynomialer Trasse”, Die Straße, 23(1), 68‒71 (1983) [in German].
Przejdź do artykułu

Autorzy i Afiliacje

Andrzej Kobryń
1
ORCID: ORCID

  1. Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Bialystok, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The main drawback of any Design for Reliability methodology is lack of easy accessible reliability models, prepared individually for each critical component. In this paper, a reliability model for SiC power MOSFET in SOT – 227 B housing, subjected to power cycling, is presented. Discussion covers preparation of Accelerated Lifetime Test required to develop such reliability model, analysis of semiconductor degradation progress, samples post-failure analysis and identification of reliability model parameters. Such model may be further used for failure prognostics or useful lifetime estimation of High Performance Power Supplies.
Przejdź do artykułu

Bibliografia

  1.  S. Baba, W. Gajewski, M. Jasinski, M. Zelechowski, and M.P. Kazmierkowski, “High performance power supplies for plasma materials processing”, IEEE Access 9, 19327–19344 (2021).
  2.  K. Fischer, K. Pelka, A. Bartschat, B. Tegtmeier, D. Coronado, C. Broer, and J. Wenske, “Reliability of power converters in wind turbines: Exploratory analysis of failure and operating data from a worldwide turbine fleet”, IEEE Trans. Power Electron. 34(7), 6332–6344 (2019).
  3.  S. O’Donnell, P. Wheeler, and A. Castellazzi, “Reliability analysis of sic mosfet power module for more electric aircraft motor drive applications”, 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles International Transportation Electrification Conference (ESARS-ITEC), 1–4 (2018).
  4.  I. Vernica, H. Wang, and F. Blaabjerg, “Design for reliability and robustness tool platform for power electronic systems – study case on motor drive applications”, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 1799–1806 (2018).
  5.  Y. Shen, A. Chub, H. Wang, D. Vinnikov, E. Liivik, and F. Blaabjerg, “Wear-out failure analysis of an impedance-source pv microinverter based on system-level electrothermal modeling”, IEEE Trans. Ind. Electron. 66(5), 3914–3927 (2019).
  6.  M. Bajerlein, M. Bor, W. Karpiuk, R. Smolec, and M. Spadło, “Strength analysis of critical components of high-pressure fuel pump with hypocycloid drive”, Bull. Pol. Acad. Sci. Tech. Sci. 68(6), 1341–1350 (2020).
  7.  W. Wang and D.B. Kececioglu, “Fitting the Weibull log-linear model to accelerated life-test data”, IEEE Trans. Reliab. 49(2), 217–223 (2000).
  8.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 2300–1917 (2020).
  9.  J. Zhang, Z. Qiu, E. Zhang, and P. Ning, “Comparison and analysis of power cycling and thermal cycling lifetime of igbt module”, 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 876–880 (2018).
  10.  M. Dbeiss and Y. Avenas, “Power semiconductor ageing test bench dedicated to photovoltaic applications”, IEEE Trans. Ind. Appl. 55(3), 3003–3010 (2019).
  11.  T. Ziemann, U. Grossner, and J. Neuenschwander, “Power cycling of commercial sic mosfets”, 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 24–31 (2018).
  12.  E. Ugur, F. Yang, S. Pu, S. Zhao, and B. Akin, “Degradation assessment and precursor identification for sic mosfets under high temp cycling”, IEEE Trans. Ind. Appl. 55(3), 2858–2867 (2019).
  13.  S. Baba, A. Gieraltowski, M.T. Jasinski, F. Blaabjerg, A.S. Bahman, and M. Zelechowski, “Active power cycling test bench for sic power mosfets – principles, design and implementation”, IEEE Trans. Power Electron. 36(3), 2661–2675 (2021).
  14.  J. Liu, G. Zhang, B. Wang, W. Li, and J. Wang, “Gate failure physics of sic mosfets under short-circuit stress”, IEEE Electron Device Lett. 41 (1), 103–106 (2020).
  15.  U. Karki and F.Z. Peng, “Effect of gate-oxide degradation on electrical parameters of power mosfets”, IEEE Trans. Power Electron. 33(12), 10764–10773 (2018).
  16.  Y. Huang, Y. Luo, F. Xiao, and B. Liu, “Failure mechanism of die-attach solder joints in igbt modules under pulse high-current power cycling”, IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 99–107 (2019).
  17.  S.-H. Ryu, “Sic power mosfet ruggedness”, ECPE Workshop: Power Semiconductor Robustness – What Kills Power Devices?, ECPE, 1–1 (2020).
  18.  J. Sun, J.Wei, Z. Zheng, Y.Wang, and K. J. Chen, “Short circuit capability and short circuit induced vth instability of a 1.2-kv sic power mosfet”, IEEE J. Emerg. Sel. Top. Power Electron. 7(3), 1539–1546 (2019).
  19.  U. Choi and F. Blaabjerg, “Separation of wear-out failure modes of igbt modules in grid-connected inverter systems”, IEEE Trans. Power Electron. 33(7), 6217–6223 (2018).
  20.  C. Zorn and N. Kaminski, “Acceleration of temperature humidity bias (thb) testing on igbt modules by high bias levels”, 2015 IEEE 27th International Symposium on Power Semiconductor Devices IC’s (ISPSD), 385–388 (2015).
  21.  IEC 60749-34 Ed. 1.0 b:2005, Semiconductor devices – mechanical and climatic test methods – part 34: Power cycling, American National Standards Institute (ANSI) (August 19, 2007).
  22.  F. Wagner, G. Reber, M. Rittner, M. Guyenot, M. Nitzsche, and B. Wunderle, “Power cycling of sic-mosfet single-chip modules with additional measurement cycles for life end determination”, CIPS 2020; 11th International Conference on Integrated Power Electronics Systems, 1–6 (2020).
  23.  C. Schwabe, P. Seidel, and J. Lutz, “Power cycling capability of silicon low-voltage mosfets under different operation conditions”, 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 495–498 (2019).
  24.  C. Durand, M. Klingler, D. Coutellier, and H. Naceur, “Power cycling reliability of power module: A survey”, IEEE Trans. Device Mater. Reliab. 16(1), 80–97 (2016).
  25.  U. Scheuermann and S. Schuler, “Power cycling results for different control strategies”, Microelectron. Reliab. 50(9), 1203‒1209 (2010), 21st European Symposium on the Reliability of Electron Devices, Failure Physics and Analysis.
  26.  M. Sathik, T.K. Jet, C.J. Gajanayake, R. Simanjorang, and A.K. Gupta, “Comparison of power cycling and thermal cycling effects on the thermal impedance degradation in igbt modules”, IECON 2015 – 41st Annual Conference of the IEEE Industrial Electronics Society, 001170–001175 (2015).
  27.  M. Thoben and M. Tuellmann, “Lifetime testing i (pc principles)”, ECPE Tutorial: Testing Automotive Power Modules According to the ECPE Guideline AQG 324 (2021).
  28.  European Center for Power Electronics, “Qualification of power modules for use in power electronics converter units in motor vehicles”, ECPE Guideline AQG 324 (2019).
  29.  V. Raveendran, M. Andresen, and M. Liserre, “Improving onboard converter reliability for more electric aircraft with lifetime-based control”, IEEE Trans. Ind. Electron. 66(7), 5787–5796 (2019).
  30.  B. Zhou, T. Lu, and J. You, “Study on fatigue ductility coefficient and life prediction for mixed solder joints under thermal cycle loads”, 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS), 686–690 (2014).
  31.  K. Okada, K. Kurimoto, and M. Suzuki, “Intrinsic mechanism of non-linearity in weibull tddb lifetime and its impact on lifetime prediction”, 2015 IEEE International Reliability Physics Symposium, 2A.4.1–2A.4.5 (2015).
  32.  J. Ling, T. Xu, R. Chen, O. Valentin and C. Luechinger, “Cu and Al-Cu composite-material interconnects for power devices”, 2012 IEEE 62nd Electronic Components and Technology Conference, 1905‒1911 (2012), doi: 10.1109/ECTC.2012.6249098.
  33.  R. Bayerer, T. Herrmann, T. Licht, J. Lutz, and M. Feller, “Model for power cycling lifetime of igbt modules – various factors influencing lifetime”, 5th International Conference on Integrated Power Electronics Systems, 1–6 (2008).
Przejdź do artykułu

Autorzy i Afiliacje

Sebastian Bąba
1
ORCID: ORCID

  1. TRUMPF Huettinger Sp. z o.o., Research and Development Department, 05-220 Zielonka, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents the first vertical-cavity surface-emitting lasers (VCSELs) designed, grown, processed and evaluated entirely in Poland. The lasers emit at »850 nm, which is the most commonly used wavelength for short-reach (<2 km) optical data communication across multiple-mode optical fiber. Our devices present state-of-the-art electrical and optical parameters, e.g. high room-temperature maximum optical powers of over 5 mW, laser emission at heat-sink temperatures up to at least 95°C, low threshold current densities (<10 kA/cm2) and wall-plug efficiencies exceeding 30% VCSELs can also be easily adjusted to reach emission wavelengths of around 780 to 1090 nm.
Przejdź do artykułu

Bibliografia

  1.  R.N. Hall, G.E. Fenner, R.J. Kingsley, T.J. Soltys, and R.D. Carlson, “Coherent light emission of radiation from GaAs junctions”, Phys. Rev. Lett. 9(9), 366–368 (1962).
  2.  M.I. Nathan, W.P. Dumke, G. Burns, F.H. Dill Jr., and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions”, Appl. Phys. Lett. 1(3), 62–64 (1962).
  3.  N. Holonyak, Jr. and S.F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx), junctions”, Appl. Phys. Lett. 1(4), 82–83 (1962).
  4.  T.M. Quist et al., “Semiconductor maser of GaAs”, Appl. Phys. Lett. 1(4), 91–92 (1962).
  5.  I. Hayashi, M.B. Panish, P.W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature”, Appl. Phys. Lett. 17(3), 109–110 (1970).
  6.  J.A. Lott, “Vertical Cavity Surface Emitting Laser Diodes for Communication, Sensing, and Integration” in Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol. 194, Eds. M. Kneissl, A. Knorr, S. Reitzenstein, A. Hoffmann, Springer, Cham, 2020.
  7.  I. Melngailis, “Longitudinal injection plasma laser of InSb”, Appl. Phys. Lett. 6(3), 59–60 (1965).
  8.  R. Dingle, W. Wiegmann, and C.H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs–AlxGa1-xAs heterostructures”, Phys. Rev. Lett. 33(14), 827–830 (1974).
  9.  J.P. van der Ziel, R. Dingle, R.C. Miller, W. Wiegmann, and W.A. Nordland Jr, “Laser oscillation from quantum states in very thin GaAs- Al0.2Ga0.8As multilayer structures”, Appl. Phys. Lett. 26(8), 463–465 (1975).
  10.  J.P. van der Ziel, and M. Ilegems, “Multilayer GaAs-A10.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy”, Appl. Opt. 14(11), 2627–2630 (1975).
  11.  D.R. Scifres, R.D. Burnham, and W. Streifer, “Highly collimated laser beams from electrically pumped SH GaAs/GaAlAs distributed- feedback lasers”, Appl. Phys. Lett. 26(2), 48–50 (1975).
  12.  D. Scifres and R.D. Burnham, Distributed feedback diode laser, US Patent US 3983509, 28 Sep 1976.
  13.  H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GalnAsP/lnP surface emitting injection lasers”, Jpn. J. Appl. Phys. 18(12), 2329 (1979).
  14.  M. Ogura, T. Hata, N.J. Kawai, and T. Yao, “GaAs/AlxGa1−xAs multilayer reflector for surface emitting laser diode”, Jpn. J. Appl. Phys. 22(2A), L112–L114 (1983).
  15.  M. Ogura, T. Hata, and T. Yao, “Distributed feed back surface emitting laser diode with multilayeredheterostructure”, Jpn. J. Appl. Phys. 23(7A), L512–L514 (1984).
  16.  M. Ogura and T. Yao, “Surface emitting laser diode with AlxGa1−xAs/GaAs multilayered heterostructure”, J. Vac. Sci. Technol. B 3(2), 784–787 (1985).
  17.  F. Koyama, F. Kinoshita, and K. Iga, “Room temperature cw operation of GaAs vertical cavity surface emitting laser”, Trans. IEICE Jpn. E71(11), 1089–1090 (1988).
  18.  P. Boulay, “After 20 years the VCSEL business has found its killer application – and is likely to explode”, European VCSEL Day, Brussels, 2019.
  19.  M. Gębski, P.S. Wong, M. Riaziat, and J.A. Lott, “30 GHz bandwidth temperature stable 980 nm VCSELs with AlAs/GaAs bottom DBRs for optical data communication”, J. Phys. Photonics, 2(3), 035008 (2020).
  20.  N. Haghighi, P. Moser, and J.A. Lott, “Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays”, IEEE J. Sel. Top. Quantum Electron. 25(6), 1–15 (2019).
  21.  S. Okur, M. Scheller, J.F. Seurin, A. Miglo, G. Xu, D. Guo, R. Van Leeuwen, B. Guo, H. Othman, L. Watkins, and C. Ghosh, “High-power VCSEL arrays with customized beam divergence for 3D-sensing applications”, in Vertical-Cavity Surface-Emitting Lasers XXIII 2019, International Society for Optics and Photonics, 2019, vol. 10938, p. 109380F.
  22.  I. Fujioka, Z. Ho, X. Gu, and F. Koyama, “Solid state LiDAR with sensing distance of over 40m using a VCSEL beam scanner”, In 2020 Conference on Lasers and Electro-Optics (CLEO) 2020, 2020, art. 10(1–2).
  23.  B. Darek, B. Mroziewicz, and J. Świderski. “Polish-made laser using a gallium arsenide junction (Gallium arsenide laser design using p-n junction obtained by diffusion of zinc in tellurium doped n-GaAs single crystal)”, Archiwum Elektrotechniki 15(1), 163–167 (1966).
  24.  P. Prystawko et al., “Blue-Laser Structures Grown on Bulk GaN Crystals”, Phys. Status Solidi A 192(2), 320–324 (2002).
  25.  K. Kosiel et al., “77 K Operation of AlGaAs/GaAs Quantum Cascade Laser at 9 mm”, Photonics Letters of Poland 1(1), 16–18, 2009.
  26.  J. Muszalski et al., “InGaAs resonant cavity light emitting diodes (RC LEDs)”, 9th Int. Symp. “Nanostructures: Physics and Technology” MPC.04, St Petersburg, Russia, 2001.
  27.  A.G. Baca and C.I. Ashby, “Fabrication of GaAs devices, chapter 10 “Wet oxidation for optoelectronic and MIS GaAs devices”, IET, London, United Kingdom, 2005.
  28.  Trumpf, Single and multiple-mode VCSELs. [Online] https://www.trumpf.com/en_US/products/vcsel-solutions-photodiodes/single- multiple-mode-vcsels/single-mode-vcsels/
  29.  F.A.I. Chaqmaqchee and J.A. Lott, “Impact of oxide aperture diameter on optical output power, spectral emission, and bandwidth for 980 nm VCSELs”, OSA Continuum, 3(9), 2602–2613 (2020).
  30.  J. Lavrencik et al., “Error-free 850 nm to 1060 nm VCSEL links: feasibility of 400Gbps and 800Gbps 8λ-SWDM”, Proceedings 45th European Conference on Optical Communication (ECOC), Dublin, Ireland, 2019, P84.
  31.  E. Simpanen et al., “1060 nm single-mode VCSEL and single-mode fiber links for long-reach optical interconnects”, J. Lightwave Technol. 37(13), 2963–2969 (2019).
Przejdź do artykułu

Autorzy i Afiliacje

Marcin Gębski
1
ORCID: ORCID
Patrycja Śpiewak
1
ORCID: ORCID
Walery Kołkowski
2
Iwona Pasternak
2
Weronika Głowadzka
1
Włodzimierz Nakwaski
1
Robert P. Sarzała
1
ORCID: ORCID
Michał Wasiak
1
ORCID: ORCID
Tomasz Czyszanowski
1
Włodzimierz Strupiński
2

  1. Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
  2. Vigo System S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Magnetic nanoparticle’s different applications in nanomedicine, due to their unique physical properties and biocompatibility, were intensively investigated. Recently, Fe₃O₄ nanoparticles, are confirmed to be the best sonosensitizers to enhance the performance of HIFU (high intensity focused ultrasound). They are also used as thermo-sensitizers in magnetic hyperthermia. A new idea of dual, magneto-ultrasound, coupled hyperthermia allows the ultrasound intensity to be reduced from the high to a moderate level. Our goal is to evaluate the enhancement of thermal effects of focused ultrasound of moderate intensity due to the presence of nanoparticles. We combine experimental results with numerical analysis. Experiments are performed on tissue-mimicking materials made of the 5% agar gel and gel samples containing Fe₃O₄ nanoparticles with φ  = 100 nm with two fractions of 0.76 and 1.53% w/w. Thermocouples registered curves of temperature rising during heating by focused ultrasound transducer with acoustic powers of the range from 1 to 4 W. The theoretical model of ultrasound-thermal coupling is solved in COMSOL Multiphysics. We compared the changes between the specific absorption rates (SAR) coefficients determined from the experimental and numerical temperature rise curves depending on the nanoparticle fractions and applied acoustic powers.We confirmed that the significant role of nanoparticles in enhancing the thermal effect is qualitatively similarly estimated, based on experimental and numerical results. So that we demonstrated the usefulness of the FEM linear acoustic model in the planning of efficiency of nanoparticle-mediated moderate hyperthermia.
Przejdź do artykułu

Bibliografia

  1.  E. Ben-Hur, B.V. Bronk, and M.M. Elkind, “Thermally enhanced radiosensitivity of cultured Chinese hamster cells”, Nat. New Biol. 238, 209–211 (1972).
  2.  M.W. Dewhirst, E.J. Ozimek, J. Gross, and T.C. Cetas, “Will hyperthermia conquer the elusive hypoxic cell? Implications of heat effects on tumor and normal-tissue microcirculation”, Radiology 137(3), 811–817 (1980).
  3.  B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia”, Crit. Rev. Oncol./Hematol. 43(1), 33–56 (2002).
  4.  Z. Izadifar, P. Babyn, and D. Chapman, “Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge”, Ultrasound Med. Biol. 43(6), 1085–110 (2017).
  5.  A. Mizera and B. Gambin, “Stochastic modeling of the eukaryotic heat shock response”, J. Theor. Biol. 265, 455–466 (2010).
  6.  S.Z. Child, B. Vives, C.W. Fridd, J.D. Hare, C.A. Linke, H.T. Davis, and E.L. Carstensen, “Ultrasonic treatment of tumors— II: Moderate hyperthermia”, Ultrasound Med. Biol. 6(4), 341–344 (1980).
  7.  G. ter Haar, “The Resurgence of Therapeutic Ultrasound – A 21st Century Phenomenon”, Ultrasonics, 48(4), 233 (2008).
  8.  B. Gambin, T. Kujawska, E. Kruglenko, A. Mizera, and A. Nowicki, “Temperature Fields Induced by Low Power Focused Ultrasound in Soft Tissues During Gene Therapy, Numerical Predictions and Experimental Results”, Arch. Acoust. 34(4), 445–459 (2009).
  9.  A. Mizera, and B. Gambin, “Modelling of ultrasound therapeutic heating and numerical study of the dynamics of the induced heat shock response”, Commun. Nonlinear Sci. Numer. Simul. 16(5), 2342–2349 (2011).
  10.  A. Sohail, Z. Ahmad, O.A. Bég, S. Arshad, and L. Sherin, “A review on hyperthermia via nanoparticle-mediated therapy”, Bull. Cancer 104(5), 452–461 (2017).
  11.  S. Taghizadeh V. Alimardani, P.L. Roudbali, Y. Ghasemi, and E. Kaviani, “Gold nanoparticles application in liver cancer”, Photodiagnosis Photodyn. Ther. 25, 389–400 (2019).
  12.  N.T.K. Thanh, Magnetic Nanoparticles: From Fabrication to Clinical Applications, CRC Press, Taylor & Francis, Boca Raton, London, New York, 2012.
  13.  S.B. Devarakonda, M.R. Myers, M. Lanier, C Dumoulin, and R.K. Banerjee, “Assessment of gold nanoparticle-mediatedenhanced hyperthermia using mr-guided high-intensity focused ultrasound ablation procedure”, Nano Lett. 17, 2532–2538 (2017).
  14.  S.B. Devarakonda, M.R. Myers, and R.K. Banerjee, “Comparison of Heat transfer enhancement between magnetic and gold nanoparticles during HIFU sonication”, ASME J. Biomech. Eng. 140, 081003, (2018).
  15.  K. Sztandera, M. Gorzkiewicz, and B. Klajnert-Maculewicz, “Gold Nanoparticles in Cancer Treatment”, Mol. Pharm. 16(1), 1–23 (2019).
  16.  S. Sengupta and V.K. Balla, “A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment”, J. Adv. Res. 14, 97–111 (2018).
  17.  P. Das, M. Colombo, and D. Prosperi, “Recent advances in magnetic fluid hyperthermia for cancer therapy”, Colloid Surf. B: Biointerfaces 174, 42–55 (2019).
  18.  N.T.K. Thanh, Clinical Applications of Magnetic Nanoparticle, CRC Press, Taylor & Francis, Boca Raton, London, New York, 2018.
  19.  A. Miaskowski, B. Sawicki, and M. Subramanian, “Singledomain nanoparticle magnetic power losses calibrated with calorimetric measurements”, Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 509–516 (2018).
  20.  A. Józefczak, K. Kaczmarek, T. Hornowski, M. Kubovˇcíková, Z. Rozynek, M. Timko, and A. Skumiel, “Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia”, Appl. Phys. Lett. 108(26), 263701 (2016).
  21.  K. Kaczmarek, T. Hornowski, R. Bielas, D. Zak, M. Timko, and A. Józefczak, “Dependence of ultrasonic and magnetic hyperthermia on the concentration of magnetic nanoparticles”, Acta Phys. Pol. A 133, 716–718, (2018).
  22.  E. Kruglenko E., M. Krajewski, R. Tymkiewicz, J. Litniewski, and B. Gambin, “Magnetic and ultrasonic thermal effects of magnetic nanoparticles in a tissue phantom”, Applications of Electromagnetics in Modern Techniques and Medicine (PTZE), Janow Podlaski, Poland, 2019, pp. 89–92.
  23.  K. Kaczmarek, T. Hornowski, I. Antal, M. Rajnak, M. Timko, and A. Józefczak, “Sono-magnetic heating in tumor phantom”, J. Magn. Magn. Mater. 500, 166396 (2020).
  24.  M. Sadeghi-Goughari, S. Jeon, and H. Kwon, “Analytical and Numerical Model of High Intensity Focused Ultrasound Enhanced with Nanoparticles”, IEEE Trans. Biomed. Eng. (2020).
  25.  M. Sadeghi-Goughari, S. Jeon, and H.J. Kwon, “Magnetic nanoparticles-enhanced focused ultrasound heating: size effect, mechanism, and performance analysis”, Nanotechnology 31(24), 24510 (2020).
  26.  B. Gambin, E. Kruglenko, R. Tymkiewicz, and J. Litniewski, “Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles”, Med. Phys. 46(10), 4361–4370 (2019).
  27.  T. Drakos, M. Giannakou, G. Menikou, C. Ioannides, and C. Damianou, “An improved method to estimate ultrasonic absorption in agar- based gel phantom using thermocouples and MR thermometry”, Ultrasonics 103, 106089 (2020), doi: 10.1016/j.ultras.2020.106089.
  28.  E. Kruglenko, I. Korczak, J. Litniewski, and B. Gambin, “Ultrasound Thermal Effect Enriched by Adding of Micro and Nano Particles to the Agar-Gel Tissue Mimicking Materials”, 2018 Joint Conference – Acoustics Ustka, Poland, 2018, pp. 1–6.
  29.  T. Kujawska, W. Secomski, E. Kruglenko, K. Krawczyk, and A. Nowicki, “Determination of Tissue Thermal Conductivity by Measuring and Modeling Temperature Rise Induced in Tissue by Pulsed Focused Ultrasound”, Plos One 9, e94929 (2014).
  30.  J. Lyklema, “The bottom size of colloids”, Bull. Pol. Acad. Sci. Tech. Sci. 53(4), 317–323 (2005), doi: 10.24425/123928.
  31.  P.C. Morais, “From magnetic fluids up to complex biocompatible nanosized magnetic systems”, Bull. Pol. Acad. Sci. Tech. Sci. 56(3), 253–262 (2008).
  32.  M. Zhang, Z. Che, J. Chen, H. Zhao, L. Yang, Z. Zhong, and J. Lu, “Experimental Determination of Thermal Conductivity of Water-Agar Gel at Different Concentrations and Temperatures”, J. Chem. Eng. Data 56(4), 859–864 (2011).
  33.  K. Kaczmarek, T. Hornowski, M. Kubovčíková, M. Timko, M. Koralewski, and A. Józefczak, “Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles”, ACS Appl. Mater. Interfaces 10(14), 11554–11564 (2018).
  34.  B. Gambin and E. Kruglenko, “Temperature Measurement by Statistical Parameters of Ultrasound Signal Backscattered from Tissue Samples”, Acta Phys. Pol. 128(3), A72–A7867 (2015).
  35.  P. Karwat, T. Kujawska, P.A. Lewin, W. Secomski, B. Gambin, and J. Litniewski, “Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm2) intensity focused ultrasound beam using phase shift of ultrasound echoes”, Ultrasonics 65, 211–219 (2016).
  36.  S.C. Brüningk, I. Rivens, P. Mouratidis, and G. Ter Haar, “Focused Ultrasound-Mediated Hyperthermia in Vitro: An Experimental Arrangement for Treating Cells under Tissue-Mimicking Conditions”, Ultrasound Med. Biol. 45(12), 3290–3297 (2019).
  37.  H.H. Pennes, “ Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm”, J. Appl. Physiol. 1(2), 93–122 (1948).
  38.  COMSOL Multiphysics 4.3b, application ID: 12659, “Focused Ultrasound Induced Heating in Tissue Phantom” [Online]. Available: https://www.comsol.com/model/focused-ultrasoundinduced-heating-in-tissue-phantom-12659.
  39.  C.R. Dillon, U. Vyas, A. Payne, D.A. Christensen, and R.B. Roemer, “An analytical solution for improved HIFU SAR estimatOnly in the Agar sampleion”, Phys. Med. Biol. 57, 4527‒4544 (2012).
  40.  S.A. Sapareto and W.C. Dewey, “Thermal dose determination in cancer therapy”, Int. J. Radiat. Oncol. Biol. Phys. 10, 787–800 (1984).
  41.  B. Gambin, E. Kruglenko, T. Kujawska, and M. Michajłow, “Modeling of tissues in vivo heating induced by exposure to therapeutic ultrasound”, Acta Phys. Pol. A 119, 950–956 (2011).
  42.  H. Morris, I. Rivens, A. Shaw and and G. ter Haar, “Investigation of the viscous heating artifact arising from the use of thermocouples in a focused ultrasound field”, Phys. Med. Biol. 53, 4759–4776 (2008).
  43.  C. Bera, S. Devaraconda, V. Kumar, A. Ganguli, and R. Banerjee, “The mechanism of nanoparticle-mediated enhanced energy transfer during high-intensity focused ultrasound sonication”, Phys. Chem. Chem. Phys. 19(29), 19075–19082 (2017).
Przejdź do artykułu

Autorzy i Afiliacje

Barbara Gambin
1
ORCID: ORCID
Eleonora Kruglenko
1

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland

Instrukcja dla autorów

Guide for Authors

https://www.editorialsystem.com/bpasts/journal/for_authors/

As of January 1st, 2025, there are changes in the fees for open access publications in Bulletin of the Polish Academy of Sciences Technical Sciences: 2000 PLN (approx. 500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 250 PLN (approx. 60 EUR) per page (see the above link with instructions for Authors for details)

Guide for Reviewers

https://www.editorialsystem.com/bpasts/journal/for_reviewers/

Call for Papers

https://www.editorialsystem.com/bpasts/journal/call_for_papers/

Guide for Guest Editors

https://www.editorialsystem.com/editor/bpasts/journal/page1/

Dodatkowe informacje

NEW PUBLICATION FEES
Articles submitted by December 31st, 2024: existing fee: 1500 PLN (and mandatory over-length charges of 230 PLN per page)
Articles submitted from January 1st, 2025: new fee: 2000 PLN (approx. 500 EUR- depending on the exchange rate) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 250 PLN).

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji