Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | 2023 | vol. 23 | No 4

Download PDF Download RIS Download Bibtex

Abstract

This paper presents the effect of the addition of Ti to the zinc bath. Hot-Dip Galvanizing was carried out on a machined ductile cast iron substrate. The process was carried out at 550°C. Experimental baths A, B and C contained 0.01%, 0.05% and 0.1%Ti, respectively. Metallographic samples were prepared to reveal the microstructure of the coatings. Thickness measurements of the obtained coatings were carried out, and graphs of the approximate crystallization kinetics of the zinc coating were prepared. High-temperature galvanization carried out on the treated surface led to the release of graphite beads from the metal matrix and their diffusion into the coating. This phenomenon can have an adverse effect on the continuity of the coating and its adhesion to the substrate. Crystallization of the δ phase was observed in the coating, and at longer immersion times – a mixture of two-phase δ1 and η phases. With increasing Ti content in the bath, a deterioration in the casting properties of the bath was observed.
Go to article

Bibliography

[1] Kopyciński, D., Guzik, E. & Woźnica, H. (2006). The gradient structure zinc coating shaping at the surface of ductile cast iron. Archives of Foundry. 6(22), 278-285.
[2] Kania, H. & Liberski, P. (2012) Synergistic influence of Al, Ni, Bi and Sn addition to a zinc bath upon growth kinetics and the structure of coatings. Materials Science and Engineering. 35, 1-10. DOI: 10.1088/1757-899X/35/1/012004.
[3] Kopyciński, D., Guzik, E. & Szczęsny, A. (2014). The effect of the number of eutectic grains on coating growth during hot dip galvanising of ductile iron castings. Archives of Foundry Engineering. 14(1), 67-70. ISSN (1897-3310).
[4] Kania, H. & Liberski, P. (2014). The structure and growth kinetics of zinc coatings on link chains produced of the 23MnNiCrMo5-2 steel. Solid State Phenomena. 212, 145- 150. DOI:10.4028/www.scientific.net/SSP.212.145.
[5] Kopyciński, D., Guzik, E., Szczęsny, A. & Siekaniec, D. (2015). Growth kinetics of the protective coating during high- and low- temperature process of hot dip galvanizing of ductile iron castings. Archives of Foundry Engineering. 15(spec.2), 47-50. ISSN (1897-3310). (in Polish).
[6] Kopyciński, D. (2015). Sequence of formation of intermetallic phases in a zinc coating. Inżynieria Materiałowa. 5(207), 251-255 DOI 10.15199/28.2015.5.10. (in Polish).
[7] Di Cocco, V. (2012). Sn and Ti influences on intermetallic phases damage in hot dip galvanizing. Frattura ed Integrità Strutturale. 22, 31-38. DOI: 10.3221/IGF-ESIS.22.05.
[8] Kania, H. & Liberski, P. (2008). High-temperature galvanizing. Ochrona przed korozją. 10, 370-376. (in Polish).
[9] Kubaschewski O. (1982). Iron – Binary phase diagrams. Berlin, Springer-Verlag.
[10] Massalski, T.B. (1990). Binary alloy phase diagrams. ASM International.
[11] Burton, P.B., Perrot, P. (1993). Phase diagram of binary iron alloys. American Society for Metals, Metals Park, OH, 1993, 459-466.
[12] Mackowiak, J. & Short, N.R. (1979). Metallurgy of galvanized coating. International Metals Reviews, 1, 1-19.
[13] Schubert, P. & Schultz, W.D. (2001). Was sind „reactive” Stähle – zum Einfluss von Wasserstoff in Baustählen auf die Schichtbildung beim Feuerverzinken. Metall. 55(12), 743-748.
[14] Schramm, J. (1936). Das System Eisen-Zink. Zeitschrift für Metallkunde, 28, 203-207.
[15] Schramm, J. (1937). Über eine neue Phase im System Eisen – Zink. Zeitschrift für Metallkunde. 29, 222-225.
[16] Scheil, E. & Wurst, H. (1937). Über die Reactionen des Eisens mit flüssigem Zink. Zeitchrift für Metallkunde, 29, 225-228.
[17] Schramm, J. (1938). Röntgenographische Unterschung der Phasen und Phasen-granzen in den System des ZInks mit Eisen, Kobalt und Nickel. Zeitschrift für Metallkunde. 30, 122-130.
[18] Schramm J. (1938). Über die Wärmetönungen der Dreiphasenumsetzungen in den System des Zinks mit Nickel, Kobalt, Eisen und Mangan. Zeitschrift für Metallkunde. 30, 131-134.
[19] Ghoniem, M.A. & Löhberg, K. (1972). Über die bei der Feuerverzinkung entstehenden δ1p und δ1k Schichten. Metall. 26, 1026-1030.
[20] Bastin, G.F., Loo, F.J.J. & Rieck, G.D. (1974). A new compound in the iron zinc system. Zeitschrift für Metallkunde. 65, 656-660.
[21] Bastin, G. F., Loo, F.J.J. & Rieck, G.D. (1976). On the texture in the δ (Fe-Zn) layer formed during hot dip galvanizing. Zeitschrift für Metallkunde. 67, 694-698.
[22] Bastin, G.F., Loo, F.J.J. & Rieck, G. D. (1977). On the δ phase in the Fe-Zn system. Zeitschrift für Metallkunde. 68, 359-361.
[23] Gelliings. P.J., Bree. E.W. & Gierman, G. (1979). Synthesis and characterization of homogoneous intermetallic Fe-Zn coumpounds (part I, the δ1 phase). Zeitschrift für Metallkunde. 70, 312-314,
[24] Gelliings, P.J., Bree, E.W. & Gierman, G. (1979). Synthesis and characterization of homogoneous intermetallic Fe-Zn coumpounds (part II: the ζ phase). Zeitschrift für Metallkunde. 70, 315-317.
[25] Gelliings, P.J., Gierman, G., Koster, D. & Kuit, J. (1980). Synthesis and characterization of homogoneous intermetallic Fe-Zn coumpounds (part III: Phase diagram). Zeitschrift für Metallkunde. 71, 70-75.
[26] Gelliings, P.J., Koster, D., Kuit, J. & Fransen, T. (1980). Synthesis and characterization of homogoneous intermetallic Fe-Zn coumpounds (part IV: thermodynamic properties). Zeitschrift für Metallkunde. 71, 150-154.
[27] Bohran-Tavakoli, A. (1984). Formation and growth of the δ1 phase in the Fe-Zn system. Part II. Zeitschrift für Metallkunde. 75, 350-355.
[28] Bohran-Tavakoli, A. (1984). On the formation and growth of the δ1 phase in the Fe-Zn system. Part II. Zeitschrift für Metallkunde. 75, 436-439.
[29] Grant, R.G., Cook, P.S. & Cook, D.C. (1995). Preparation and chemical analysys of high purity iron-zinc alloys. Journal Mater. Research. 10, 2454-2462.
[30] Liu, Z.T., Boisson, M. & Uwakweh, O.N.C. (1996). Kinetics of phase evolution of Zn-Fe intermetallics. Metallurgical and Materials Transactions. 27 A, 2904-2910.
[31] Bastin, G.F. & Loo, F.J. (1978). On the texture in the ζ(Fe Zn) layer formed during hot dip galvanizing system. Zeitschrift für Metallkunde. 69, 540-545.
[32] Hong, M. N. & Saka, H. (1997). Transmition electron microscopy of the iron-zinc δ1 intermetallic phase. Scripta Materialia. 36, 1423-1426.
[33] Hong, M.N. & Saka, H. (1997). Plasticity and grain boundry structure of the δ1p and δ1k intermetallic phase in the Fe-Zn system. Acta Metallurgica. 45, 4225-4230.
[34] Reumont, G., Perrot, P., Fiorani, J.M. & Hertz, J. (2000). Thermodynamic evaluation of the Fe-Zn system. Journal of Phase Equilibria. 21, 371-378.
[35] Mita, K., Ikeda, T., Maeda, M. (2000). Phase diagram study of Fe-Zn intermetallics. Journal of Phase Equilibria. 23, 1808-1815.
[36] Su, X., Tang, N.Y. & Toguri, J.M. (2001). Thermodynamic evaluation of the Fe-Zn system. Journal of Alloys and Compounds. 325, 129-136.
[37] Jędrzejczyk, D. & Hajduga, M. (2011). Effect of the surface oxidation on the hot-dip zinc galvanizing of cast iron. Archives of Metallurgy and Materials. 56(3), 839-849. https://doi.org/10.2478/v10172-011-0093-x.
[38] Jędrzejczyk. D. (2010). The influence of high-temperature treatment of cast iron on the structure of the surface layer formed as a result of hot-dip galvanizing. Ochrona przed Korozją. 2, 46-48.
Go to article

Authors and Affiliations

Karolina Bracka-Kęsek
1
ORCID: ORCID
Andrzej Szczęsny
1
ORCID: ORCID
Dariusz Kopyciński
1
ORCID: ORCID
Edward Guzik
1
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the suitability of Ijero-Ekiti quartz as a refractory raw material for industrial furnace applications. In order to ascertain its prospective applications, the thermal behaviour, mineralogical composition and chemical composition were determined. Ijero-Ekiti quartz was characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric and Differential Thermal analysis (TGA and DTA). Its thermal conductivity with specific heat coefficient was determined. The outcome revealed that the quartz sample has a high purity of 94.3% SiO 2, making it suitable as a refractory material. The XRD analysis revealed the presence of alpha-quartz as the dominant crystal phase, which is desirable for refractory applications. The FTIR analysis indicated the absence of hydroxyl (-OH) groups. This indicates a low risk of failure and damage such as spalling, cracking and other forms of damage when produced into bricks. The TGA and DTA displayed significant mass losses and large endothermic bands, which were connected to the dehydroxylation of the quartz rock samples. Based on the demonstrated qualities, the quartz rock sample could be subjected to thermal processing. This study therefore established that Ijero-Ekiti quartz is a suitable raw material for refractory applications due to its high purity, alpha-quartz dominant crystal phase, absence of hydroxyl groups, and uniform morphology.
Go to article

Bibliography

[1] Jongs, L.S., Jock, A.A., Ekanem, O.E. & Jauro, A. (2018). Investigating the industrial potentials of some selected Nigerian clay deposits. Journal of Minerals and Materials Characterization and Engineering. 6, 569-586. DOI: 10.4236/jmmce.2018.66041.
[2] Adeoti, M., Dahunsi, O., Awopetu, O.O., Aramide, F., Alabi, O., Johnson, O. & Abdulkarim, A. (2019). Suitability of selected Nigerian clays for foundry crucibles production. Procedia Manufacturing. 35, 1316-1323. https://doi.org/10.1016/j.promfg.2019.05.023.
[3] Thethwayo, B. & Steenkamp, J. (2020). A review of carbon-based refractory materials and their applications. Journal of the Southern African Institute of Mining and Metallurgy. 120, 641-650. http://dx.doi.org/10.17159/2411-9717/1011/2020.
[4] Fleuriault, C., Grogan, J. & White, J. (2018). Refractory materials for metallurgical Uses. The Journal of The Minerals, Metals & Materials Society. 70, 2420-2421. https://doi.org/10.1007/s11837-018-3096-5.
[5] Sarkar, R. (2016). Refractory technology: Fundamentals and applications. CRC Press, Boca Raton, Florida, United State.
[6] Lee, S. (2015). Types of Refractory Materials and their Applications [Online]. Linkedin. Available: https://www.linkedin.com/pulse/types-refractory-materials-applications-le-sylvia [Accessed June 16 2021]
[7] MARKETS AND MARKETS. (2020). Refractories Market by Form (Shaped Refractories, Unshaped Refractories), Alkalinity (Acidic & Neutral. Basic), End-Use Industry (Iron & Steel, Power Generation, Non-Ferrous Metals, Cement, Glass), and Region - Global Forecast to 2025 [Online]. MARKETSANDMARKETS. Available: https://www.marketsandmarkets.com/Market-Reports/refractories-market-222632393.html?gclid=CjwKCAjwiLGGBhAqEiwAgq3q_mu5-rTCddXNmL2Po9LaVwDTS2rVmPj8dfITLtQzmA4u7BCHkVKZ-RoCur0QAvD_BwE [Accessed June 16 2021].
[8] Ren, C. & Enneti, R.K. (2020). Process design and material development for high-temperature applications. The Journal of The Minerals, Metals & Materials Society. 72. 4028-4029. https://doi.org/10.1007/s11837-020-04381-4.
[9] Patel, N. (2013). Factors affecting the lifespan of cast refractory linings: a general overview. Journal of the Southern African Institute of Mining and Metallurgy. 113, 637-641.
[10] Oyeyemi, A.O., Adekola, F.A., & Olaleye, M.B. (2016). Characterization of Ijero-Ekiti kaolin for industrial applications. Journal of Minerals and Materials Characterization and Engineering. 5(3), 153-160. https://doi.org/10.4236/jmmce.2016.53018.
[11] Adeniyi, F.I., Ogundiran, M.B., Hemalatha, T. & Hanumantrai, B.B. (2020). Characterization of raw and thermally treated Nigerian kaolinite-containing clays using instrumental techniques. SN Applied Sciences. 2, 1-14. https://doi.org/10.1007/s42452-020-2610-x.
[12] Kralik, G., Martins, K.V., Alves, J.R., Sartori, D.V., Scholz, R. & Corat, E.J. (2016). Characterization and utilization of quartz sands in the manufacture of silicon metal. Journal of Cleaner Production. 112, 3304-3311. https://doi.org/10.1016/j.jclepro.2015.06.108.
[13] Guan, Y., Zhang, X., Chen, J. & Wang, L. (2018). Study on thermal shock resistance and high-temperature behavior of quartz-feldspar refractory materials. Journal of the American Ceramic Society. 101(4), 1467-1475. https://doi.org/10.1111/jace.14900.
[14] Zhou, C., Gao, X., Xu, Y., Buntkowsky, G., Ikuhara, Y., Riedel, R., & Ionescu, E. (2015). Synthesis and high-temperature evolution of single-phase amorphous Si–Hf–N ceramics. Journal of the European Ceramic Society. 35(7), 2007-2015. https://doi.org/10.1016/j.jeurceramsoc.2015.01.026.
[15] ASTM C201-93(2019). Standard test method for thermal conductivity of refractories. ASTM International, West Conshohocken, PA, United State.
[16] ASTM C114-22 (2022). Standard test methods for chemical analysis of hydraulic cement. ASTM International, West Conshohocken, PA, United State.
[17] Griffiths, P.R. & De Haseth, J.A. (1986). Fourier transform infrared spectrometry. John Wiley & Sons; New York, United State.
[18] Stodghill, S.P. (2010). Thermal analysis - A review of techniques and applications in the pharmaceutical sciences. American Pharmaceutical Review. 13(2), 29-36.
[19] Craig, D.Q.M., Reading, M. (2007). Thermal analysis of pharmaceuticals. CRC Press, Taylor and Francis Group, Boca Raton, Florida, United State.
[20] Drábik, M. (2017). The challenge of methods of thermal analysis in solid state and materials chemistry. Pure and Applied Chemistry. 89(4), 451-459.
[21] Drabik, M. & Slade, R.C. (2004). Macrodefect-free materials: modification of interfaces in cement composites by polymer grafting. Interface Science. 12(4), 375-379. https://doi.org/10.1023/B:INTS.0000042335.65518.11.
[22] Mojumdar, S.C., Mazanec, K. & Drabik, M. (2006). Macro-defect-free (MDF) cements. Journal of Thermal Analysis and Calorimetry. 83(1), 135-139.
[23] Drábik, M. (2009). Contribution of materials chemistry to the knowledge of macro-defect-free (MDF) materials. Pure and Applied Chemistry. 81(8), 1413-1421. https://doi.org/10.1351/PAC-CON-08-07-16.
[24] Drabik, M., Billik, P. & Galikova, L. (2012). Macro defect free materials; the challenge of mechanochemical activation. Ceramics-Silikáty. 56(4), 396-401. https://doi.org/10.1007/s10973-005-7045-5.
[25] Ahmed, Y.E., Abdulaziz, A.A., Hamid, M.S., Anesh, M.P., Saeed, M.A., Arfat, A. & Mohammad, I.A. (2019). Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Applied Science. 9(6), 1-18. https://doi.org/10.3390/app9061149.
[26] Ajala, A.J. & Badarulzaman, N.A. (2016). Thermal conductivity of Aloji fireclay as refractory material. International Journal of Integrated Engineering. 8(2), 16-20.
[27] Vaishnav, H., Navin, K., Kurchania, R. & Ball, R.J. (2022). Synthesis of ZrO2 based nanofluids for cooling and insulation of transformers. IEEE Transactions on Dielectrics and Electrical Insulation. 29(1), 199-205. DOI: 10.1109/TDEI.2022.3148444.
[28] Ajiboye, T.K., Fabiyi, M.O., Mustapha, N. & Abdulkareem, S. (2022). Characterization of clay and granite dust blends as novel materials for energy storage and diffuser in constructing solar flat-plate collector. Tanzania Journal of Science. 48(2), 283-293.
[29] Ritz, M., Vaculíková, L. & Plevová, E. (2010). Identification of clay minerals by infrared spectroscopy and discriminant analysis. Society for Applied spectroscopy. 64(12) 1379-1387.
[30] Yue, C., Liu, J., Zhang, H., Dai, L., Wei, B. & Chang, C. (2018). Increasing the hydrophobicity of filter medium particles for oily water treatment using coupling agents. Heliyon. 4(9), 1-14. DOI: 10.1016/j.heliyon.2018.e00809.
[31] Zaitan, H., Bianchi, D., Achak, O. & Chafik, T. (2008). A comparative study of the adsorption and desorption of o-xylene onto bentonite clay and alumina. Journal of Hazardous Materials. 153(1-2), 852-859. https://doi.org/10.1016/j.jhazmat.2007.09.070.
[32] Gao, J., Jiang, C. & Zhang, X. (2007). Kinetics of curing and thermal degradation of POSS epoxy resin/DDS system. International Journal of Polymeric Materials and Polymeric Biomaterials. 56(1), 65-77. https://doi.org/10.1080/00914030600710620.
[33] Odewole, P.O., Kashim, I.B. & Akinbogun, T.L. (2019). Production of refractory porcelain crucibles from local ceramic raw materials using slip casting. International Journal of Engineering and Manufacturing. 9(5), 56-69. DOI: 10.5815/ijem.2019.05.05.
[34] Oluwagbenga, O.P. & Majiyebo, A.E. (2019). Development of aluminosilicate refractory crucibles from the optimum mix of Awo quartz and Ikere Ekiti clays. ATBU Journal of Science, Technology and Education. 7(2), 331-340.
[35] Shuaib-Babata, Y.L., Ibrahim, H.K., Ajao, K.S., Elakhame, Z.U., Aremu, N.I. & Odeniyi, O.M. (2019). Assessment of physico-mechanical properties of clay deposits in Asa Local Government Area of Kwara State Nigeria for industrial applications. Journal of Research Information in Civil Engineering. 16(2), 2727-2753.
[36] Aremu, D.A., Aremu, J.O. & Ibrahim, U.H. (2013). Analysis of Mubi clay deposit as furnace lining. International Journal of Scientific and Technology. 2(12), 183-186.
[37] Olajide, O.I., Michael, O.B. & Terna, T.D. (2015). Production and characterization of aluminosilicate refractory brick using Unwana beach silica sand, Ekebedi and Unwana clays. British Journal of Applied Science & Technology. 5(5), 461-471.
[38] Osabor, V.N., Okafor, P.C., Ibe, K.A. & Ayi, A.A. (2009). Characterization of clays in Odukpani, south eastern Nigeria. African Journal of Pure and Applied Chemistry. 3(5), 79-85. ISSN 1996 – 0840.
[39] Tenimu, A.A. (2019). Thermogravimetric and differential thermal investigation of rice husk cellulose. Bayero Journal of Pure and Applied Sciences. 12(1), 6-11. http://dx.doi.org/10.4314/bajopas.v12i1.2.
[40] Amkpa, J.A. & Badarulzaman, N.A. (2016). Thermal conductivity of Aloji fireclay Brick. International Journal of Integrated Engineering. 8(3), 16-20.
[41] Silva, K.R, Liszandra, F.A., Camposb, L.N. & Santanaa, D.L. (2019). Use of experimental design to evaluate the effect of the incorporation of quartzite. residues in ceramic mass for porcelain tile production. Materials Research. 22(1), 1-11. https://doi.org/10.1590/1980-5373-MR-2018-0388.
[42] Czichos, H., Saito, T., Smith, L.E. (2011). Springer handbook of metrology and testing. Springer, New York, United State.
[43] Navas, V. G., Sandá, A., Sanz, C., Fernández, D., Vleugels, J., Vanmeensel, K., & Fernández, A. (2015). Surface integrity of rotary ultrasonic machined ZrO2–TiN and Al2O3–TiC–SiC ceramics. Journal of the European Ceramic Society, 35(14), 3927-3941. https://doi.org/10.1016/j.jeurceramsoc.2015.06.018.
[44] Palm, M. & Inden, G. (1995). Experimental determination of phase equilibria in the Fe Al C system. Intermetallics. 3(6), 443-454. https://doi.org/10.1016/0966-9795(95)00003-H.
[45] Wulf, R., Barth, G. & Gross, U. (2007). Intercomparison of insulation thermal conductivities measured by various methods. International Journal of Thermophysics, 28, 1679-1692. https://doi.org/10.1007/s10765-007-0278-8.
[46] Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S. (2007). Fundamentals of heat and mass transfer. John Wiley & Sons; New York, United State.
[47] Hagemann, L. & Peters, E. (1982). Thermal Conductivity- comparison of methods: ASTM-method, hot wire method and its variations. Interceram. 31, 131-135.
[48] Ferber, M.K., Weresczak, A.A. & Hemrick, J.G. (2006). Comprehensive creep and thermophysical performance of refractory materials. United States. DOI:10.2172/885151.
[49] Litovsky, E., Kleiman, J.I. & Menn, N. (2003). Measurement and analysis by different methods of apparent, radiative, and conductive thermophysical properties of insulation materials. High Temperatures-High Pressures. 35(1), 101-108. DOI:10.1068/htjr080.
[50] Arthur, E.K. & Gikunoo, E. (2020). Property analysis of thermal insulating materials made from Ghanaian anthill clay deposits. Cogent Engineering. 7(1), 1-20. https://doi.org/10.1080/23311916.2020.1827493.

Go to article

Authors and Affiliations

B.V. Omidiji
1
O.B. Ogundipe
2
H.A. Owolabi
1

  1. Obafemi Awolowo University, Ile-Ife, Nigeria
  2. Landmark University, Omu-Aran, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

Compacted Graphite Iron (CGI), is a unique casting material characterized by its graphite form and extensive matrix contact surface. This type of cast iron has a tendency towards direct ferritization and possesses a complex set of intriguing properties. The use of data mining methods in modern foundry material development facilitates the achievement of improved product quality parameters. When designing a new product, it is always necessary to have a comprehensive understanding of the influence of alloying elements on the microstructure and consequently on the properties of the analyzed material. Empirical studies allow for a qualitative assessment of the above-mentioned relationships, but it is the use of intelligent computational techniques that allows for the construction of an approximate model of the microstructure and, consequently, precise predictions. The formulated prognostic model supports technological decisions during the casting design phase and is considered as the first step in the selection of the appropriate material type.
Go to article

Bibliography

[1] König, M. (2010). Literature review of microstructure formation in compacted graphite iron. International Journal of Cast Metals Research. 23(3), 185-192. https://doi.org/10.1179/136404609X12535244328378.
[2] Dawson, S. & Hang, F. (2009). Compacted graphite iron-a material solution for modern diesel engine cylinder blocks and heads. China Foundry. 6(3), 241-246.
[3] Chen, Y., Pang, J. C., Li, S. X., Zou, C. L. & Zhang, Z. F. (2022). Damage mechanism and fatigue strength prediction of compacted graphite iron with different microstructures. International Journal of Fatigue. 164, 107126, 1-14. https://doi.org/10.1016/j.ijfatigue.2022.107126.
[4] Sandoval, J., Ali, A., Kwon, P., Stephenson, D. & Guo, Y. (2023). Wear reduction mechanisms in modulated turning of compacted graphite iron with coated carbide tool. Tribology International. 178, 108062, 1-13. https://doi.org/10.1016/j.triboint.2022.108062.
[5] Hosadyna-Kondracka, M., Major-Gabryś, K., Warmuzek, M. & Brůna, M. (2022). Quality assessment of castings manufactured in the technology of moulding sand with furfuryl-resole resin modified with PCL additive. Archives of Metallurgy and Materials. 67(2), 753-758. https://doi.org/10.24425/amm.2022.137814.
[6] Mrzygłód, B., Łukaszek-Sołek, A., Olejarczyk-Wożeńska, I. & Pasierbiewicz, K. (2022). Modelling of plastic flow behaviour of metals in the hot deformation process using artificial intelligence methods. Archives of Foundry Engineering. 22(3), 41-52. DOI: 10.24425/afe.2022.140235.
[7] Palkanoglou, E.N., Baxevanakis, K.P. & Silberschmidt, V.V. (2022). Thermal debonding of inclusions in compacted graphite iron: Effect of matrix phases. Engineering Failure Analysis. 139, 106476, 1-13. https://doi.org/10.1016/j.engfailanal.2022.106476.
[8] Patel, M., Dave, K. (2022). An insight of compacted graphite iron (CGI) characteristics and its production: a review. Recent Advances in Manufacturing Processes and Systems: Select Proceedings of RAM 2021, 131-148.
[9] Górny, M., Lelito, J., Kawalec, M. & Sikora, G. (2015). Influence of structure on the thermophisical properties of thin walled castings. Archives of Foundry Engineering. 15(2), 23-26.
[10] Górny, M., Kawalec, M., Witek, G. & Rejek, A. (2019). The influence of wall thickness and mould temperature on structure and properties of thin wall ductile iron castings. Archives of Foundry Engineering. 19(2), 55-59. DOI: 10.24425/afe.2019.127116.
[11] Saka, S.O., Seidu, S.O., Akinwekomi, A.D. & Oyetunji, A. (2021). Alloying elements variant on the development of antimony modified compacted graphite iron using rotary furnace. Annals of the Faculty of Engineering Hunedoara. 19(2), 13-22.
[12] Soiński, M.S., Jakubus, A., Borowiecki, B. & Mierzwa, P. (2021). Initial assessment of graphite precipitates in vermicular cast iron in the as-cast state and after thermal treatments. Archives of Foundry Engineering. 21(4), 131-136.
[13] Domeij, B., Elfsberg, J. & Diószegi, A. (2023). Evolution of dendritic austenite in parallel with eutectic in compacted graphite iron under three cooling conditions. Metallurgical and Materials Transactions B. 1-16.
[14] Ren, Z., Jiang, H., Long, S. & Zou, Z. (2023). On the mechanical properties and thermal conductivity of compacted graphite cast iron with different pearlite contents. Journal of Materials Engineering and Performance. 1-9. https://doi.org/10.1007/s11665-023-07823-7.
[15] Gumienny, G., Kacprzyk, B., Mrzygłód, B. & Regulski, K., (2022). Data-driven model selection for compacted graphite iron microstructure prediction. Coatings. 12(11), 1676, 1-18. DOI: 10.3390/coatings12111676.
[16] Mrzygłód, B., Gumienny, G., Wilk-Kołodziejczyk, D. & Regulski, K., (2019). Application of selected artificial intelligence methods in a system predicting the microstructure of compacted graphite iron. Journal of Materials Engineering and Performance. 28, 3894-3904. DOI: 10.1007/s11665-019-03932-4.
[17] Wilk-Kołodziejczyk, D., Regulski, K., Gumienny, G. & Kacprzyk, B. (2018). Data mining tools in identifying the components of the microstructure of compacted graphite iron based on the content of alloying elements. International Journal of Advanced Manufacturing Technology. 95(9-12), 3127-3139. DOI 10.1007/s00170-017-1430-7.
[18] Wilk-Kołodziejczyk, D., Kacprzyk, B., Gumienny, G., Regulski, K., Rojek, G. & Mrzygłód, B., (2017). Approximation of ausferrite content in the compacted graphite iron with the use of combined techniques of data mining, Archives of Foundry Engineering. 17(3), 117-122. DOI 10.1515/afe-2017-0102.
[19] Kusiak, J., Sztangret, Ł. & Pietrzyk, M. (2015). Effective strategies of metamodelling of industrial metallurgical processes. Advances in Engineering Software. 89, 90-97. DOI: 10.1016/j.advengsoft.2015.02.002.
[20] Sacks, J., Welch, W.J., Mitchel, T. & Wynn, H.P., (1989) Design and analysis of computer experiments. Stat Sci. 4, 409-435. DOI: 10.1214/ss/1177012413.
[21] Fragassa, C. (2022) Investigating the material properties of nodular cast iron from a data mining perspective. Metals. 12(9), 1493, 1-26. DOI: 10.3390/met12091493.
[22] Huang, W., Lyu, Y., Du, M., Gao, S-D., Xu, R-J., Xia, Q-K. & Zhangzhou, J. (2022). Estimating ferric iron content in clinopy-roxene using machine learning models. American Mineralogist. 107, 1886-1900. DOI: 10.2138/am-2022-8189.
[23] Sika, R., Szajewski, D., Hajkowski, J. & Popielarski, P. (2019). Application of instance-based learning for cast iron casting defects prediction. Management and Production Engineering Review. 10(4), 101-107. DOI: 10.24425/mper.2019.131450.
[24] Chen, S. & Kaufmann, T. (2022). Development of data-driven machine learning models for the prediction of casting surface defects. Metals. 12(1), 1-15. DOI: 10.3390/met12010001
[25] Alrfou, K., Kordijazi, A., Rohatgi, P. & Zhao, T. (2022). Synergy of unsupervised and supervised machine learning methods for the segmentation of the graphite particles in the microstructure of ductile iron. Materials Today Communications. 30. 103174. DOI: 10.1016/j.mtcomm.2022.103174.
[26] Vantadori, S., Ronchei, C., Scorza, D., Zanichelli, A. & Luciano, R. (2022). Effect of the porosity on the fatigue strength of metals. Fatigue & Fracture of Engineering Materials & Structures. 45(9), 2734-2747. https://doi.org/10.1111/ffe.13783.
[27] Dučić, N., Jovičić, A., Manasijević, S., Radiša, R., Ćojbašić, Z. & Savković, B. (2020). Application of machine learning in the control of metal melting production process. Applied Sciences. 10(17), 6048, 1-15. DOI: 10.3390/app10176048
[28] Kihlberg, E., Norman, V., Skoglund, P., Schmidt, P. & Moverare, J. (2021). On the correlation between microstructural pa-rameters and the thermo-mechanical fatigue performance of cast iron. International Journal of Fatigue. 145, 106112, 1-10. DOI: 10.1016/j.ijfatigue.2020.106112.
[29] Hernando, J.C., Elfsberg, J., Ghassemali, E., Dahle, A.K. & Diószegi, A. (2020). The role of primary austenite morphology in hypoeutectic compacted graphite iron alloys. International of Metalcasting. 14, 745-754. DOI: 10.1007/s40962-020-00410-9.
[30] Regordosa, A., de la Torre, U., Loizaga, A., Sertucha, J. & Lacaze, J. (2020). Microstructure Changes During Solidification of Cast Irons: Effect of Chemical Composition and Inoculation on Competitive Spheroidal and Compacted Graphite Growth. International of Metalcasting. 14, 681-688. DOI: 10.1007/s40962-019-00389-y.
[31] Ribeiro B.C.M., Rocha F.M., Andrade B.M., Lopes W., Corrêa E.C.S., (2020). Influence of different concentrations of silicon, copper and tin in the microstructure and in the mechanical properties of compacted graphite iron, Materials Research. 23(2), e2019-0678, 1-10. DOI: 10.1590/1980-5373-MR-2019-0678.
[32] Tan, P.-N., Steinbach, M. & Kumar, V. (2005). Introduction to Data Mining. Boston: Pearson Addison-Wesley.
[33] Rokach, L. & Maimon, O. (2005). Top-down induction of decision trees classifiers-a survey. IEEE Transactions on Systems Man and Cybernetics Part C (Applications and Reviews). 35(4), 476-487.
[34] Barros, R.C., de Carvalho, A. & Freitas, A.A. (2015). Automatic Design of Decision-Tree Induction Algorithms, Springer International Publishing.
[35] Regulski, K., Wilk-Kołodziejczyk, D. & Gumienny, G. (2016). Comparative analysis of the properties of the Nodular Cast Iron with Carbides and the Austempered Ductile Iron with use of the machine learning and the support vector machine. The In-ternational Journal of Advanced Manufacturing Technology. 87(1), 1077-1093. DOI: 10.1007/s00170-016-8510-y.
[36] Rui, G., Zhiqian, Z., Tao, W., Guangheng, L., Jingyi, Z. & Dianrong, G., (2020) Degradation state recognition of piston pump based on ICEEMDAN and XGBoost, Applied Sciences. 10(18), 6593, 1-17. DOI:10.3390/app10186593

Go to article

Authors and Affiliations

Łukasz Sztangret
1
ORCID: ORCID
Izabela Olejarczyk-Wożeńska
1
ORCID: ORCID
Krzysztof Regulski
1
ORCID: ORCID
Grzegorz Gumienny
2
ORCID: ORCID
Barbara Mrzygłód
1
ORCID: ORCID

  1. AGH University of Science and Technology, Poland
  2. Lodz University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In lost wax technology, self-supporting ceramic moulds are made, which must have adequate strength after being filled with liquid metal. The final structural strength is determined by such factors as the thickness of the individual layers applied to the wax model resulting from the viscosity of the liquid mass, the specific strength of the layers formed, and the heat treatment of the moulds. The development of technology and materials is moving in the direction of increasing the specific strength of self-supporting ceramic moulds. The consequence of this is that the final strength of these moulds is too high, making it difficult to knock castings out of the moulds. Removing mould remnants from holes, closed spaces of the casting, corners, sharp edges, variable cross sections and etc. is cumbersome. In order to remove mould remnants from the casting, a method is used to dissolve them in heated solutions of suitable chemical composition and reaction. The paper presents the results of research on a new solution, the essence of which is the production of layers in a ceramic mould, in the middle zone of the mould, characterized by a significantly reduced final strength, achieved after firing. These layers are produced using a different liquid ceramic mass than the base one, based on an organic binder. As a result, thanks to the embedded layer, very good knock-out of castings is achieved and separation of residual ceramic mass. Special layers can be incorporated over the entire surface or only in those places where the bonding of the casting surface and ceramic mass occurs.
Go to article

Bibliography

[1] Małek, M. Wiśniewski, P., Matysiak, H., Ziwlinska, M. & Kurzydkowski, K. J. (2013). Yttrium (III) oxide application for manufacturing prime coat of ceramic shell moulds used in investment casting. Glass Ceram. 6, 8-11. DOI: 10.13140/RG.2.1.1594.6002.
[2] Matysiak, H., Ferenc, J., Lipiński, Z., Grabarz, K., Michalski J., & Kurzydłowski, K.J. (2009). Characterization and monitoring of technological parameters of ceramic slurries used in the investment casting process of aircraft turbine elements using the Bridgman technique. Inżynieria Materiałowa. 30(4), 239-244.
[3] Wei-hua Liu, Xin Jia, Lai Song, & Ying-min Li. (2023). Effects of binder components and PVA modifier on bonding performance of phosphate binder for sand core-making. China Foundry. 20, 134-138. https://doi.org/10.1007/s41230-023-1021-1
[4] Pattnaik, S.R. (2017). An investigation on enhancing ceramic shell properties using naturally available additives. The International Jouranl of Advanced Manufacturing Technology. 91, 3061-3078. https://doi.org/10.1007/s00170-016-9975-4.
[5] Soroczyński, A., Haratym, R. & Biernacki, R. (2019). The role of recycled ceramic material obtained from the ceramic layered moulds used in the Investment Casting. Archives of Foundry Engineering. 19(1), 71-74. DOI: 10.24425/afe.2018.125194.
[6] Karwiński, A. (2014). Technological parameters of the process of making molds of ceramic with the participation of water silicate binder. In Swiatkowski. K. (Eds.)., Polish Metallurgy in 2011-2014, (pp. 529–541), AKAPIT, Cracow. (in Polish).
[7] Karwiński, A. & Żółkiewicz, Z. (2014). The research of properties of experimental ceramic layers. Archives of Metallurgy and Materials. 59(2), 703-705. DOI:https://doi.org/10.2478/amm-2014-0115.
[8] Lu K, Liu X, Duan Z (2019). Effect of firing temperature and time on hybrid fiber-reinforced Shell for investment casting. International Journal of MetalCasting. 13, 666-673. https://doi.org/10.1007/s40962-018-0280-x.
[9] Kolczyk, J., Zych, J. & Jamrozowicz, Ł. (2017). Influence of the Al2O3 solid phase on the kinetics of binding ceramic moulds. Archives of Foundry Engineering. 17(4), 91-96. DOI: 10.1515/afe-2017-0136.
[10] Kolczyk, J., Zych, J. (2013). Kinetics of hardening and drying of ceramic moulds with the new generation binder – colloidal silica. Archives of Foundry Engineering. 13(4), 112-116. DOI: 10.2478/afe-2013-0093.
[11] Tabor, A., Rączka, J.S. (1998). Casting design and mold technology. Kraków: Fotobit. (in Polish).
[12] Skarbiński, M. (1957). Casting construction. Warszawa: Państwowe Wydawnictwo Techniczne. (in Polish).
[13] Pająk, J., Ziemski, M. & Nowak, B. (2010). Poly(vinyl alcohol) – biodegradable vinyl material. CHEMIK. 64(7-8), 523-530. (in Polish).
[14] Rohini, Kumar, D.B., Rami, Reddy, M., Mulay, V.N., & Krishnamurti, N. (2000). Acrylic co-polymer emulsion binders for green machining of ceramics. European Polymer Journal. 36(7), 1503-1510. DOI:10.1016/S0014-3057(99)00199-8.

Go to article

Authors and Affiliations

Joanna Kolczyk-Tylka
1
ORCID: ORCID
Jerzy Zych
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article describes a new test method to quickly evaluate the durability of a protective coating to dynamic contact with liquid metal. The essence of the method is the movement of a drop of liquid metal inside a rotating ring, covered from the inside with the protective coating under test. The parameters determined in the test are analogous to the classic pin-on-disk tribological test. The method was tested for the system: liquid alloy 2017A vs. AlTiN coating on a copper substrate. The test temperature was 750°C, and exposure times ranged from 30 to 90 minutes. Sliding path equivalent for the metal droplet/coating system ranged from 31.6 to 95 m. The study, which included visual evaluation of the surface of the samples, followed by phase and microstructural analysis, showed the high efficiency of the method for assessing the lifetime of protective coatings on contact with liquid metal. The investigated issue was also analyzed from the model side taking into account changes in the diffusion coefficient at the contact of liquid metal with the substrate, occurring with the progressive degradation of the protective coating.
Go to article

Bibliography

[1] Buyanovskii, I.A. (1994). Tribological test methods and apparatus. Chemistry Technology Fuels Oils. 30, 133-147. https://doi.org/10.1007/BF00723941.
[2] Torbacke, M., Kassman, Å. & Kassfeldt, E. (2014). Tribological Test Methods. In Lubricants: Introduction to Properties and Performance (pp. 113-132). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118799734.
[3] Jakubéczyová, D., Hagarová, M., Hvizdoš, P., Cervová, J. & Frenák, M. (2015). Tribological tests of modern coatings. International Journal of Electrochemical Science. 10(9), 7803-7810.
[4] Hagarová1, M., Savková, J. & Jakubéczyová, D. (2008). Structure and tribological properties of thin TiAlN coating, Journal of Metals, Materials and Minerals. 18(2), 25-31.
[5] Rui Wang, Hai-Juan Mei, Ren-Suo Li, Quan Zhang, Teng-Fei Zhang, Qi-Min Wang, (2018). Friction and wear behavior of AlTiN-coated carbide balls against SKD11 hardened steel at elevated temperatures. Acta Metallurgica Sinica (English Letters). 31, 1073-1083. https://doi.org/10.1007/s40195-018-0753-1.
[6] Eustathopoulos, N. (2015). Wetting by liquid metals application in materials processing: The contribution of the Grenoble group. Metals. 5(1), 350-370. https://doi.org/10.3390/met5010350.
[7] Asthana, R. & Sobczak, N. (2014). Wettability in joining of advanced ceramics and composites: issues and challenges. Ceramics Transactions. 248, 589-600.
[8] Sobczak, N., Singh, M. & Asthana, R. (2005). High-temperature wettability measurements in metal/ceramic systems – some methodological issues. Current Opinion in Solid State and Materials Science. 9(4-5), 241-253. DOI:10.1016/j.cossms.2006.07.007.
[9] Eustathopoulos, N., Sobczak, N., Passerone A. & Nogi, K. (2005). Measurement of contact angle and work of adhesion at high temperature. Journal of Materials Science. 40, 2271-2280. https://doi.org/10.1007/s10853-005-1945-4.
[10] Sobczak, N., Nowak, R., Radziwill, W., Budzioch, J. & Glenz, A. (2008). Experimental complex for investigations of high temperature capillarity phenomena. Materials Science and Engineering A. 495(1-2), 43-49. https://doi.org/10.1016/j.msea.2007.11.094.
[11] Hotlos, A., Boczkal, G., Nawrocki, J. & Ziewiec, K. (2019). Microstructure of the oxide ceramics/Inconel 713C interface. Materials Science and Technology (United Kingdom). 35(4), 456-461. https://doi.org/10.1080/02670836.2019.1570440.
[12] Sułkowski, B., Boczkal, G., Pałka, P. & Mrówka-Nowotnik, G. (2021) Effect of graphite microstructure on their physical parameters and wettability properties. Refractories and Industrial Ceramics. 62(4), 458-462. https://doi.org/10.1007/s11148-021-00624-2.
[13] Liu Jian, Wang Wei, Yan Wei, Shi Quan Qiang, Yang Zhenguo, Dan Yiyin, Yang Ke. Rotatory experimental apparatus of liquid metal high temperature corrosion, Pat. CN204758460.
[14] Wang Pei, Ye Zhongfei, Dong Hong, Li Dianzhong, Li Yiyi, Rotary type dynamic metal corrosion device, Pat. CN203405397.
[15] Góral, M., Mrówka-Nowotnik, G. (2020). Protective coatings for aluminium die casting moulds and continuous casting moulds: A review Ochrona Przed Korozja. 63(7), 216–219. https://doi.org/10.15199/40.2020.7.1.
[16] Boczkal. G., Patent Application P.435041, A method and device for testing durability of protective coatings in contact with liquid metal, 2020-08-21.
[17] Wriedt, H.A., Murray, J.L. (1986). Binary Alloy Phase Diagrams, 3, (Ed. T. B. Massalski),ASM, Metals Park, OH 32705.
[18] PalDey, S. & Deevi, S.C. (2003). Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering: A. 342(1-2), 58-79. https://doi.org/10.1016/S0921-5093(02)00259-9.
[19] Mrówka-Nowotnik, G., Gancarczyk, K., Nowotnik, A., Dychtoń, K. & Boczkal, G. (2021). Microstructure and properties of as-cast and heat-treated 2017a aluminium alloy obtained from scrap recycling. Materials. 14(1),89, 1-25. https://doi.org/10.3390/ma14010089.
[20] Ullner, C., Beckmann, J. & Morrell, R. (2002). Instrumented indentation test for advanced technical ceramics. Journal of the European Ceramic Society. 22(8), 1183-1189. https://doi.org/10.1016/S0955-2219(01)00433-2.
[21] Okane, T., Senderowski, C., Zasada, D., Kania, B., Janczak-Rusch, J. & Wolczynski, W. (2011). Thermodynamic justification for the Ni/Al/Ni joint formation by a diffusion brazing. International Journal of Thermodynamics. 14(3), 97-105. https://doi.org /10.5541/ijot.296.
[22] Paul, A., Laurila, T., Vuorinen, V., Divinski, S. (2014). Fick’s Laws of Diffusion. In Thermodynamics, Diffusion and the Kirkendall Effect in Solids (pp. 115-139). Springer, Cham. https://doi.org/10.1007/978-3-319-07461-0_3.
[23] Perek-Nowak, M. & Boczkal, G. (2016). Formation of transition phases on interface between monocrystalline Fe and Cu due to mutual solid-state diffusion. Archives of Metallurgy and Materials. 61(2A), 581-585. DOI:10.1515/amm-2016-0099.

Go to article

Authors and Affiliations

Paweł Pałka
1
ORCID: ORCID
Grzegorz Boczkal
1
ORCID: ORCID
Agnieszka Hotloś
1
ORCID: ORCID
Grażyna Mrówka-Nowotnik
2
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Non-Ferrous Metals Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Rzeszów University of Technology, Department of Material Science Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Turbulent filling of a mould is one of the ways to introduce extrinsic defects into the cast part that could deteriorate many properties of any casting. The turbulence can be easily eliminated by counter gravity casting. In gravity casting, tapered downsprue, tapered runner is needed such that the mould cavity is filled counter-gravity from the bottom which is the only best way to eliminate turbulence during filling. Tilt casting method also exists which has the potential to quiescently transfer the liquid into the mould cavity. In this work, gravity and tilt casting methods were used to evaluate the tensile properties of Nb grain refined 206 alloy. Three different Nb contents were investigated: 0.025, 0.05 and 0.1 wt% ratios and it was found that 0.05 wt% revealed the highest tensile properties. On the other hand, when the intrusion of surface folded oxides was eliminated during filling, it was found that mechanical properties were increased significantly, and particularly, the toughness was increased by two folds when tilt casting was applied compared to gravity casting.
Go to article

Bibliography

[1] Campbell, J. (2015). Casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann.
[2] Campbell, J. (2006). An overview of the effects of bifilms on the structure and properties of cast alloys. Metallurgical and Materials Transactions. B 37, 857-863. https://doi.org/10.1007/BF02735006.
[3] Campbell, J. (2020). The Mechanisms of Metallurgical Failure: On the Origin of Fracture. Butterworth-Heinemann.
[4] Burford, J.C. & Sokolowski, J. (2007). A study of bubble entrainment as related to runner velocity in aluminum sand castings using the Cosworth process. Materials Science Forum. 539-543, 398-403. https://doi.org/10.4028/ www.scientific.net/MSF.539-543.398.
[5] Byczynski, G., Mackay, R. (2019). The nemak cosworth casting process latest generation. In Shape Casting: 7th International Symposium Celebrating Prof. John Campbell's 80th Birthday (pp. 179-185). Springer International Publishing.
[6] Mirak, A., Divandari, M., Boutorabi, S. & Taylor, J. (2012). Effect of oxide film defects generated during mould filling on mechanical strength and reliability of magnesium alloy castings (AZ91). International Journal of Cast Metals Research. 25(3), 188-194. https://doi.org/10.1179/ 1743133611Y.0000000037.
[7] Tunçay, T., Baytar, F., Tunçay, B., Sunar, T. & Dişpinar, D. (2022). Effects of mold cavity geometry on flow rate and mechanical properties in Al-Si-Mg alloy. Journal of Materials Engineering and Performance. 32(10), 4702-4711. https://doi.org/10.1007/ s11665-022-07412-0.
[8] Teng X, Mae H, Bai Y, Wierzbicki T (2009). Pore size and fracture ductility of aluminum low pressure die casting. Engineering Fracture Mechanics. 76(8), 983-996. https://doi.org/10.1016/j.engfracmech.2009.01.001.
[9] Moradi, A. & Divandari, M. (2023). Effect of bottom gating filling system design on the initial stage of mold filling: a parametric study. International Journal of Metalcasting. 17, 2716-2730. https://doi.org/10.1007/s40962-022-00937-z.
[10] Hsu, F-Y. (2016). Bifilm defect formation in hydraulic jump of liquid aluminum. Metallurgical and Materials Transactions B. 47, 1634-1648. https://doi.org/10.1007/ s11663-016-0656-3.
[11] Hsu, F-Y. & Li, C-L. (2015). Runner systems containing ceramic foam filters quantified by “Area Normalized” bifilm index map. International Journal of Metalcasting. 9, 23-35. https://doi.org/10.1007/BF03355620.
[12] Hsu, F-Y. & Lin, H-J. (2009). A diffusing runner for gravity casting. Metallurgical and Materials Transactions B. 40, 833-842. https://doi.org/10.1007/s11663-009-9272-9.
[13] Hsu, F-Y. & Yang, Y-M. (2012). Confluence weld in an aluminum gravity casting. Journal of Materials Processing Technology. 212(4), 825-840. https://doi.org/10.1016/ j.jmatprotec.2011.11.006.
[14] Hsu, F-Y., Jolly, M.R. & Campbell, J. (2009). A multiple-gate runner system for gravity casting. Journal of Materials Processing Technology. 209(17), 5736-5750. https://doi.org/10.1016/j.jmatprotec.2009.06.003.
[15] Hsu, F-Y., Jolly, M.R. & Campbell, J. (2006). Vortex-gate design for gravity casting. International Journal of Cast Metals Research. 19(1), 38-44. https://doi.org/10.1179/ 136404606225023318.
[16] Hsu, Q.C., Do, A.T., Yeh, K.C. & Ye, J.H. (2014). Improvement on die-casting efficiency and property of aluminum alloy casing. Key Engineering Materials. 625, 518-524. https://doi.org/10.4028/www.scientific.net/ KEM.625.518.
[17] Ahmad, R. & Hashim, M. (2011). Effect of vortex runner gating system on the mechanical strength of Al-12Si alloy castings. Archives of Metallurgy and Materials. 56(4), 991-991.
[18] Ahmad, R. & Talib, N. (2011). Experimental study of vortex flow induced by a vortex well in sand casting. Metallurgical Research & Technology. 108(3), 129-139. https://doi.org/10.1051/metal/2011049.
[19] Majidi, S.H. & Beckermann, C. (2019). Effect of pouring conditions and gating system design on air entrainment during mold filling. International Journal of Metalcasting. 13(2), 255-272. https://doi.org/10.1007/s40962-018-0272-x.
[20] El-Sayed, M., Hassanin. H. & Essa, K. (2016). Bifilm defects and porosity in Al cast alloys. The International Journal of Advanced Manufacturing Technology. 86, 1173-1179. https://doi.org/10.1007/s00170-015-8240-6.
[21] El-Sayed, M.A. (2018). Influence of mould design and hydrogen content on the tensile properties of Al-Mg cast alloys. Journal of Engineering Technology. 6(1), 584-594.
[22] Jezierski, J., Dojka, R. & Janerka, K. (2018). Optimizing the gating system for steel castings. Metals. 8(4), 266, 1-13. https://doi.org/10.3390/met8040266.
[23] Dojka, R., Jezierski, J. & Campbell, J. (2018). Optimized gating system for steel castings. Journal of Materials Engineering and Performance. 27, 5152-5163. https://doi.org/10.1007/s11665-018-3497-1
[24] Remišová, A. The possibilities for reducing reoxidation in gating system. Retrieved May 21, 2023 from https://www.kavs.uniza.sk/images/PDF/ The_possibilities.pdf
[25] Zhao, H., Ohnaka, I. & Zhu, J. (2008). Modeling of mold filling of Al gravity casting and validation with X-ray in-situ observation. Applied Mathematical Modelling. 32(2), 185-194. https://doi.org/10.1016/j.apm.2006.11.009.
[26] Harding, R. (2007). The use of tilt filling to improve the quality and reliability of castings. Foundry Trade Journal. 180(3644), 142-146.
[27] Pease, L.F., Bao, J., Safarkoolan, R., Veldman, T.G., Phillips, N.R.J., McNeff, P.S. & Clayton, C.K. (2021). Flow obstacles minimize surface turbulence in Tilt casting. Chemical Engineering Science. 230, 116104. https://doi.org/10.1016/j.ces.2020.116104.
[28] Pavlak, L. (2008). Effect of filling conditions on the quality of cast aluminum cylinder heads. Metalurgija-Journal of Metallurgy. 14(3), 31-39.
[29] Cox, M. & Harding, R. (2007). Influence of tilt filling on Weibull modulus of 2L99 aluminium investment castings. Materials science and technology. 23(2), 214-224. https://doi.org/10.1179/174328407X157263.
[30] Hamzah, E., Prayitno, D. & Ghazali, M. (2002). Effect of mould tilt angle on the mechanical properties of as-cast aluminum alloy. Materials & Design. 23(2), 189-194. https://doi.org/10.1016/S0261-3069(01)00068-1.
[31] Gokhale, A. & Patel. G. (2005). Origins of variability in the fracture-related mechanical properties of a tilt-pour-permanent-mold cast Al-alloy. Scripta Materialia. 52(3), 237-241. https://doi.org/10.1016/j.scriptamat.2004.09.011.
[32] Sigworth, G.K. & DeHart, F. (2003). Recent developments in the high strength aluminum-copper casting alloy A206. AFS Transactions. 111, 341-354.
[33] Mi, J., Harding, R. & Campbell, J. (2002). The tilt casting process. International Journal of Cast Metals Research. 14(6), 325-334. https://doi.org/10.1080/13640461.2002. 11819450.
[34] Ransing, R., Savino, S. & Lewis. R. (2005). Numerical optimisation of tilt casting process. International Journal of Cast Metals Research. 18(2), 109-118. https://doi.org/10.1179/136404605225022901.
[35] Bolzoni, L., Nowak, M. & Babu, N.H. (2015). Grain refinement of Al–Si alloys by Nb–B inoculation. Part II: application to commercial alloys. Materials & Design. 66(5), 376-383. https://doi.org/10.1016/j.matdes.2014.08.067.
[36] Bolzoni, L., Nowak, M., Babu, N. H. (2015). On the effect of Nb-based compounds on the microstructure of Al–12Si alloy. Materials Chemistry and Physics. 162, 340-345. https://doi.org/10.1016/j.matchemphys.2015.05.076. Nowak, M., Bolzoni, L. & Babu, N.H. (2015). Grain refinement of Al–Si alloys by Nb–B inoculation. Part I: Concept development and effect on binary alloys. Materials & Design. 66, 366-375. https://doi.org/10.1016/j.matdes. 2014.08.066.
[37] Nowak, M., Yeoh, W., Bolzoni, L. & Babu, N.H. (2015). Development of Al–Nb–B master alloys using Nb and KBF4 powders. Materials & Design.75, 40-46. https://doi.org/10.1016/j.matdes.2015.03.010.
[38] Aydogan, F., Dizdar, K. C., Sahin, H., Mentese, E. & Dispinar, D. (2022). Weibull analysis evaluation of Ti, B, Nb and MTS grain refined Al11Si alloy. Materials Chemistry and Physics. 287, 126264. https://doi.org/10.1016/ j.matchemphys.2022.126264.
[39] Xu, J., Li, Y., Hu, B., Jiang, Y., Li, Q. (2019). Development of Al–Nb–B master alloy with high Nb/B ratio for grain refinement of hypoeutectic Al–Si cast alloys. Journal of Materials Science. 54, 23. 14561-14576. https://doi.org/ 10.1007/s10853-019-03915-9.
[40] Sahin, H., & Dispinar, D. (2023). Effect of Rare Earth Elements Erbium and Europium Addition on Microstructure and Mechanical Properties of A356 (Al–7Si–0.3 Mg) Alloy. International Journal of Metalcasting, 1-10
Go to article

Authors and Affiliations

Nuri Palamutcu
1
ORCID: ORCID
Kerem Can Dizdar
1
ORCID: ORCID
Hayati Sahin
2
ORCID: ORCID
Derya Dispinar
1
ORCID: ORCID

  1. Istanbul Technical University, Turkey
  2. Foseco R&D, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

The subject of this study is to show that the parameters of the melting process of high chromium cast iron affect the cost of casting and the properties of the cast iron. The analysis of the quality of the casting and its price was conducted in terms of the metal charge of high chromium cast iron. As is well known, in order to obtain the correct structure of the casting, and thus good strength properties, it is necessary to use clean batch components free of undesirable impurities. Unfortunately, the quality of the metal charge is proportional to its price. Thus, the use of expensive batch components offers the possibility of obtaining healthy and meeting the strength properties of castings. However, there is a flaw in this approach. And it is from the point of view of economics that production plants are forced to look for savings. Expensive feedstock materials are replaced by cheaper counterparts giving the possibility of obtaining castings with similar properties often, however, at the cost of increased inferior quality. It seems that a way out of this situation is to introduce a modification procedure into the alloyed iron manufacturing technology. The selected modifiers should affect the fragmentation of the structure of the primary austenite. At this point, it can be hypothesized that this will result in the elimination of hot cracking in high chromium cast iron. The industrial research carried out at the "Swidnica" Foundry Ltd. made it possible to show by means of the Althoff-Radtke method that by using the modification of the liquid metal of the so-called "inferior and cheaper" composition of the metal charge, a reduction in the occurrence of hot cracks and shrinkage cavities can be achieved. In addition, iron-niobium modification not only reduced the formation of casting defects in castings, but also slightly improved the impact strength of high-chromium cast iron. The work was written as part of an implementation PhD.
Go to article

Bibliography

[1] Podrzucki, C. (1991). Cast iron. Structure Features Application Volumes 1 and 2. Wydawnictwo ZG STOP. (in Polish).
[2] Zhou, J. (2009). Colour metallography of cast iron. China Foundry. 6(2), 152-163.
[3] Guoxiong, S., Xiaoming, Z. & Zhidong, L. (1989). Microstructure and properties of grey cast iron. Spherical Graphite Cast Iron. 50-62.
[4] Miyake, H. & Okada, A. (1998). Nucleation and growth of primary austenite in hypoeutectic cast iron. AFS Transactions. 106, 581-587.
[5] Siekaniec, D., Kopyciński, D., Guzik, E. & Szczęsny, A. (2022). Effect of inoculation treatment on number of primary austenite grains in hypoeutectic chromium cast iron: EBSD imaging and mathematical structure prediction. Materials. 15(18), 6318, 1-14. https://doi.org/10.3390/ma15186318.
[6] Guzik, E., Kopyciński, D., Burbelko, A. & Szczęsny, A (2023). Evaluation of the number of primary grains in hypoeutectic chromium cast iron with different wall thickness using the ProCAST program. Materials. 16(8), 3217, 1-15. https://doi.org/10.3390/ma16083217.
[7] Döpp, R. (1975). Solidification and graphite formation in white cast iron. In proceedings of the Second International Symposium on the Metallurgy of Cast Iron, Geneva, Switzerland, May 29-31, 1974. Switzerland: Georgi Publishing Company.
[8] Tabrett, C.P., Sare, I.R. & Ghomashchi, M.R. (1996). Microstructure-property relationships in high chromium white iron alloys. International Materials Reviews. 41(2), 59-82. https://doi.org/10.1179/imr.1996.41.2.59.
[9] Filipovic, M., Kamberovic, Z., Korac, M., Gavrilovski, M. (2013). Microstructure and mechanical properties of Fe–Cr–C–Nb white cast irons. Materials & Design. 47, 41-48. https://doi.org/10.1016/j.matdes.2012.12.034.
[10] Stefanescu, D.M. (1998). Solidification of eutectic alloys: Cast iron. In: ASM Handbook, Vol. 15 Casting, ASM International, Metals Park, OH.
[11] da Silva, A.E. Rabelo de Melo I.N., Pinheiro I.P., da Silva L. R. (2020). Characterisation and machinability of high chromium hardened white cast iron with and without the addition of niobium. Wear. 460-461, 15, 203-463. https://doi.org/10.1016/j.wear.2020.203463.
[12] Kopyciński, D., Kawalec, M., Szczȩsny, A., Gilewski, R. & Piasny, S. (2013). Analysis of the structure and abrasive wear resistance of white cast iron with precipitates of carbides Archives of Metallurgy and Materials. 58(3), 973-976. DOI: 10.2478/emm-2013-0113.
[13] Penagos, J.J., Pereira, J.I., Machado, P.C., Albertin, E. & Sinatora, A. (April 2017). Synergetic effect of niobium and molybdenum on abrasion resistance of high chromium cast irons. Wear. 376-377, B, 983-992. https://doi.org/10.1016/ j.wear.2017.01.103.
[14] Dojka, M., Dojka, R., Studnicki, A., Stawarz, M. (2018). Influence of Ti and Re on primary crystallization and wear resistance of chromium cast iron. In 73rd World Foundry Congress “Creative Foundry”: WFC 2018 – Proceedings, pp. 61-62.
[15] Dojka, M., Dojka, R., Stawarz, M., Studnicki, A. (2019). Influence of Ti and REE on primary crystallization and wear resistance of chromium cast iron. Journal of Materials Engineering and Performance. 28(7), 4002-4011. https://doi.org/10.1007/s11665-019-04088-x. [16] Studnicki, A., Dojka, R., Gromczyk, M., Kondracki, M. (2016). Influence of titanium on crystallization and wear resistance of high chromium cast iron. Archives of Foundry Engineering. 16(1), 117-123. DOI: 10.1515/afe-2016-0014.
[17] Tęcza, G. (2023). Changes in abrasion resistance of cast Cr-Ni steel as a result of the formation of niobium carbides in alloy matrix. Materials. 16(4), 1726, 1-14. https://doi.org/10.3390/ma16041726.
[18] Tęcza, G. (2022). Changes in microstructure and abrasion resistance during miller test of hadfield high-manganese cast steel after the formation of vanadium carbides in alloy matrix. Materials. 15(3), 1021, 1-14. https://doi.org/10.3390/ ma16041726.
[19] Dorula, J. (2013). Macro- and microstructure formation of modified cast iron with low sulfur content. PhD thesis. Kraków. Akademia Górniczo-Hutnicza. (in Polish). [20] Podrzucki, C., Kalata, C. (1976). Metallurgy and cast iron foundry. Katowice: Wyd. Śląsk. (in Polish).
[21] Jura, S., Cybo, J. & Jura, Z. (2001). Hot cracking of steel castings is still an unresolved problem. Archives of Foundry. 1(2/2), 512-519. (in Polish).
[22] Collective work. (2013). Foundryman's Guide. Contemporary foundry. Tom 1. Kraków: Wydawnictwo STOP. (in Polish).
[23] Data provided by Sylwia Rosińska Head of Purchasing Department of "Świdnica" Foundry Ltd.
Go to article

Authors and Affiliations

Jan Mędoń
1
ORCID: ORCID
Andrzej Szczęsny
1
ORCID: ORCID
Eugeniusz Ziółkowski
1
ORCID: ORCID
Edward Guzik
1
ORCID: ORCID
M. Czarny
2
Dariusz Kopyciński
1
ORCID: ORCID

  1. AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland
  2. Odlewnia „Świdnica” Sp. z o.o., Świdnica ul. Kliczkowska 53, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study aimed touse3D computed tomography (CT) to analyse a joint between two dissimilar materials produced by friction stir welding (FSW). As the materials joined, i.e., aluminum and copper, differ in properties (e.g., density and melting point), the weld is predicted to have an inhomogeneous microstructure. The investigations involved applying microfocus computed tomography (micro-CT) to visualize and analyze the volumetric structure of the joint. Volume rendering is extremely useful because, unlike computer modelling, which requires many simplifications, it helps create highly accurate representations of objects. Image segmentation into regions was performed through global gray-scale thresholding. The analysis also included elemental mapping of the weld cross-sections using scanning electron microscopy (SEM) and examination of its surface morphology by means of optical microscopy (OP). The joint finds its use in developing elements used in the chemical, energetics and aerospace industries, due to the excellent possibilities of combining many different properties, and above all, reducing the weight of the structure.
Go to article

Bibliography

[1] Zhao, Y., You, J., Qin, J., Dong, C., Liu, L., Liu, Z. & Miao, S. (2022). Stationary shoulder friction stir welding of Al–Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint. Materials Science & Engineering A 837, 142754. https://doi.org/10.1016/j.msea.2022.142754.
[2] Zhou, L., Li, G.H., Zhang, R.X., Zhou, W.L., He, W.X., Huang, Y.X. & Song, X.G. (2019). Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. Journal of Alloys and Compounds. 775(15), 372-382. https://doi.org/10.1016/ j.jallcom.2018.10.045.
[3] Tong, L., Xie, J.N., Liu, L., Chang, G. & Ojo, O.O. (2020). Microscopic appraisal and mechanical behavior of hybrid Cu/Al joints fabricated via friction stir spot welding-brazing and modified friction stir clinching-brazing. Journal of Materials Research and Technology. 9(6),13239-13249. https://doi.org/10.1016/j.jmrt.2020.09.042.
[4] Tian, W.H., Su, H. & Wu, C.S. (2020). Effect of ultrasonic vibration on thermal and material flow behavior, microstructure and mechanical properties of friction stir welded al/cu joints. International Journal of Advanced Manufacturing Technology. 107(1), 59-71. https://doi.org/10.1007/s00170-020-05019-0.
[5] Pilarczyk, J. (2005). Engineer's Handbook 2, Welding. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[6] Rajak, D.K., Pagar, D.D., Menezes, P.L. & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology. 34(24), 2613-2637. https://doi.org/10.1080/ 01694243.2020.1780716.
[7] Schneider, J., Chen, P. & Nunes, A.C. (2019). Entrapped oxide formation in the friction stir weld (FSW) process. Metallurgical and Materials Transactions A, 50, 257-270 https://doi.org/10.1007/s11661-018-4974-8.
[8] Rams, B., Pietras, A., & Mroczka K. (2014). Friction stir welding of elements made of cast aluminium alloys. Archives of Foundry Engineering. 59(1), 385-392.
[9] Martinsen, K., Hu, S.J. & Carlson, B.E. (2015). Joining of dissimilar materials. CIRP Annals. 64(2), 679-699. https://doi.org/10.1016/j.cirp.2015.05.006.
[10] Weman, K. (2011). Welding processes handbook. New York: Elsevier.
[11] Singh, R., Kumar, R., Feo, L., et al. (2016). Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Composites Part B: Engineering. 101, 77-86. https://doi.org/10.1016/ j.compositesb.2016.06.082.
[12] Rajak, D.K., Pagar, D.D., Menezes, P.L., et al. (2019). Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers. 11(10), 1667. https://doi.org/10.3390/polym11101667.
[13] Lee, H.S., Lee, Y.R., Min, K.J. (2016). Effects of friction stir welding speed on AA2195 alloy. In: MATEC Web of Conferences. Vol. 45, France: EDP Sciences.
[14] Ramnath, B.V., Subramanian, S.A., Rakesh, R. et al. (2018). A review on friction stir welding of aluminium metal matrix composites. In IOP Conference Series: Materials Science and Engineering. 8-9 March 2018. IOP Publishing; 012103.
[15] Bankowski, D., Spadlo, S. (2017). Vibratory tumbling of elements made of Hardox400 steel. In 26th International Conference on Metallurgy and Materials (pp. 725-730).
[16] Karrar, G., Galloway, A., Toumpis, A., Li, H.J. & Al-Badouc, F. (2020). Microstructural characterisation and mechanical properties of dissimilar aa5083-copper joints produced by friction stir welding. Journal of Materials Research and Technology. 9(5), 11968-11979. https://doi.org/10.1016/j.jmrt.2020.08.073.
[17] Galvao, I., Loureiro, A. & Rodrigues, D.M. (2016). Critical review on friction stir welding of aluminium to copper. Science and Technology of Welding and Joining. 21(7), 523-546. https://doi.org/10.1080/13621718.2015.1118813.
[18] Ouyang, J., Yarrapareddy, E. & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology. 172(1), 110-122. https://doi.org/10.1016/j.jmatprotec.2005.09.013.
[19] Mehta, K.P. & Badheka, V.J. (2016). A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Materials and Manufacturing Processes. 31(3), 233-254. https://doi.org/10.1080/10426914.2015.1025971.
[20] Cao, F.J., Li, J.P., Hou, W.T., Shen, Y.F., Ni, R. (2021). Microstructural evolution and mechanical properties of the friction stir welded Al Cu dissimilar joint enhanced by post-weld heat treatment. Materials Characterization. 174, 110998. https://doi.org/10.1016/j.matchar.2021.110998.
[21] Hou, W.T., Shen, Z.K., Huda, N., Oheil, M., Shen, Y.F., Jahed, H. & Gerlich, A.P. (2021). Enhancing metallurgical and mechanical properties of friction stir butt welded joints of Al–Cu via cold sprayed Ni interlayer. Materials Science and Engineering: A. 809, 140992. https://doi.org/10.1016/j.msea.2021.140992.
[22] Mao, Y., Ni, Y., Qin, X.D.P. & Li, F. (2020). Microstructural characterization and mechanical properties of micro friction stir welded dissimilar al/cu ultra-thin sheets. Journal of Manufacturing Processes. 60, 356-365. https://doi.org/10.1016/j.jmapro.2020.10.064.
[23] Patel, N.P., Parlikar, P., Dhari, R.S., Mehta, K. & Pandya, M. (2019). Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint. Journal of Manufacturing Processes. 47, 98-109. https://doi.org/10.1016/j.jmapro.2019.09.020.
[24] Mehta, K.P. & Badheka, V.J. (2017). Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. Journal of Materials Processing Technology. 239, 336-345. https://doi.org/10.1016/ j.jmatprotec.2016.08.037.
[25] You, J.Q., Zhao, Y.Q., Dong, C.L., Wang, C.G., Miao, S., Yi, Y.Y. & Hai, Y.H. (2020). Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-t6 aluminium alloy at high rotation speeds. The International Journal of Advanced Manufacturing Technology. 108, 987-996. https://doi.org/10.1007/s00170-019-04594-1.
[26] Li, D.X., Yang, X.Q., Cui, L., He, F.Z. & Zhang, X. (2015). Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-t651. Journal of Materials Processing Technology. 222, 391-398. https://doi.org/10.1016/ j.jmatprotec.2015.03.036.
[27] Depczynski, W., Spadlo, S., Mlynarczyk, P., Ziach, E., Hepner P. (2015). The selected properties of porous layers formed by pulse microwelding technique. In METAL 2015: 24TH International Conference on Metallurgy and Materials, 3 - 5 June 2015 (pp.1087-1092). Brno, Czech Republic.
[28] Bańkowski D. & Młynarczyk P. (2020). Visual testing of castings defects after vibratory machining. Archives of Foundry Engineering. 20(4), 72-76. DOI: 10.24425/afe.2020.133350.
[29] Mlynarczyk, P., Spadlo, S. (2016). The analysis of the effects formation iron - tungsten carbide layer on aluminum alloy by electrical discharge alloying process. In METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, 25 – 27 May 2016 (pp.1109-1114). Brno, Czech Republic.
[30] Depczynski, W. Jasionowski, R., Mlynarczyk, P. (2018). The impact of process variables on the connection parameters during pulse micro-welding of the H800 superalloy. In METAL 2018: 27TH International Conference on Metallurgy and Materials, 23 – 25 May 2018 (pp. 1506-1512). Brno, Czech Republic.
[31] Bankowski, D. & Spadlo, S. (2019). The use of abrasive waterjet cutting to remove flash from castings. Archives of Foundry Engineering. 19(3), 94-98. DOI: 10.24425/afe.2019.129617.
[32] Spadlo, S., Depczynski, W. & Mlynarczyk, P. (2017). Selected properties of high velocity oxy liquid fuel (HVOLF) - sprayed nanocrystalline WC-Co Infralloy(TM) S7412 coatings modified by high energy electric pulse. Metalurgija. 56(3-4), 412-414.
[33] Bonarski, J.T., Kania, B., Bolanowski, K. & Karolczuk, A. (2015). Utility of stress-texture characteristics of structural materials by X-ray. Archives of Metallurgy and Materials. 60(3), 2247-2252. DOI: 10.1515/amm-2015-0370.
[34] Jezierski, G. (1993). Industrial radiography. Warszawa: Wydawnictwa Naukowo-Techniczne. (in Polish).
[35] Cierniak, R. (2005). Computed tomography. Construction of CT devices. Reconstruction algorithms. Warszawa: Akademicka Oficyna Wydawnicza EXIT. (in Polish).
[36] Kielczyk, J. (2006). Industrial radiography. Wydawnictwo Gamma. (in Polish).
[37] Ratajczak, E. (2012). X-ray computed tomography (CT) for industrial tasks. Pomiary Automatyka Robotyka. 5, 104-113. (in Polish).
[38] Cullity, B.D. (1959). Elements of X-Ray diffraction. London: Addison-Wesley Publising Company. Inc.
[39] Axon, H.J., Hume-Rothery, W. (1948). Proc. R. Soc. (London), Ser. A 193, 1.
[40] Pearson, W.B. (1958).: ÑA Handbook of Lattice Spacings and Structures of Metals and Alloysì. Oxford: Pergamon Press.  
Go to article

Authors and Affiliations

Wojciech P. Depczyński
1
ORCID: ORCID
Damian Bańkowski
1
ORCID: ORCID
Piotr S. Młynarczyk
1
ORCID: ORCID

  1. Radiography and Computed Tomography Laboratory, Department of Metal Science and Manufacturing Processes, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

During mold filling and casting solidification, melt flow caused by gravity is present. Otherwise, forced flow may be a method applied for casting properties improvement. The flow effect generated by an electromagnetic field on the growing phases and a whole microstructure in Al-Si-Mn alloys was studied by slow solidification conditions. The hypereutectic and eutectic alloys were chosen to allow independent growth or joint growth of forming: Si crystals, Mn-rich α-Al15Si2Mn4 phases and Al-Si eutectics. In eutectic alloys, where Mn-phases precipitate as first and only one till solidus temperature, flow decreased number density of pre-eutectic α-Al15Si2Mn4. In the hypereutectic alloys, where Mn-phases grow in common with Si crystals, forced convection increased the overall dimension, decreased number density of pre-eutectic Mn phases and strengthened the tendency to growth in the outside of the sample. In the alloys, where Si crystals grow as first, stirring reduce number density of Si and moved them into thin layer outside cylindrical sample. Also by joint growth of Si crystals and Mn-phases, in hypereutectic Mn/Si alloy, flow moved Si crystals outside, reduced number density and increased the dimension of crystals. Stirring changed also AlSi eutectic spacing, specific surface Sv of α-Al and secondary dendrite arm spacing λ2. The results gave insight of what transformation under stirring take place in simple Al-Si-Mn alloys, and helps to understand what modifications in technical alloys may occur, that finally lead to changes in castings microstructure and properties. The possibility to control dimension, number density and position of Mn-phases and Si crystals is completely new and may help by metallurgical processes, continuous casting of billets and in the production of Si for the solar photovoltaic industry.
Go to article

Bibliography

[1] Mondolfo, L.F. Aluminium Alloys: Structure and Properties. London: Butterworths & Co.: UK, 1976.
[2] Nong, G. (Ed.). Aluminum Alloys. MDPI. Switzerland, 2018.
[3] Mikolajczak, P. & Ratke, L. (2014). Three Dimensional Morphology of Mn Rich Intermetallics in AlSi Alloys Investigated with X-Ray Tomography. Materials Science Forum - Solidification and Gravity SolGrav VI., Miskolc. 790-791, 335-340. https://doi.org/10.4028/ www.scientific.net/MSF.790-791.335.
[4] Das, A., Ji, S., Fan, Z. (2002). Solidification microstructures obtained by a novel twin screw liquidus casting method. In Proceedings of the 7th International Conference on Demi-Solid Processing of Alloys and Composites,25–27 September 2002 (pp. 689-694). Tsukuba, Japan.
[5] Zhang, Y., Patel, J.B., Lazaro-Nebreda, J. & Fan, Z. (2018). Improved defect control and mechanical property variation in high-pressure die casting of A380 alloy by high shear melt conditioning. JOM. 70, 2726-2730. https://doi.org/10.1007/s11837-018-3005-y.
[6] Sree Manu, K.M., Barekar, N.S., Lazaro-Nebreda, Patel, J.B. & Fan, Z. (2021). In-situ microstructural control of A6082 alloy to modify second phase particles by melt conditioned direct chill (MC-DC) casting process – A novel approach. Journal of Materials Processing Technology. 295, 117170. https://doi.org/10.1016/j.jmatprotec.2021.117170.
[7] Brollo, G.L., Proni, C.T.W. & Zoqui, E.J. (2018). Thixoforming of an Fe-Rich Al-Si-Cu Alloy—thermodynamic characterization, microstructural evolution, and rheological behavior. Metals. 8, 332. https://doi.org/10.3390/met8050332.
[8] Haga T. & Suziki, S. (2001). Casting of aluminum alloy ingots for thixoforming using a cooling slope. Journal of Materials Processing Technology. 118(1-2), 169-172. https://doi.org/10.1016/S0924-0136(01)00888-3.
[9] Wang, H., Davidson, C.J. & St. John, D.H. (2004). Semisolid microstructural evolution of AlSi7Mg during partial remelting. Materials Science and Engineering: A. 368(1-2), 159-167. https://doi.org/10.1016/j.msea.2003.10.305.
[10] Eslami, M., Payandeh, M., Deflorian, F. & Jarfors, A.E.W., Zanella, C. (2018). Effect of segregation and surface condition on corrosion of Rheo-HPDC Al–Si alloys. Metals. 8, 209. https://doi.org/10.3390/met8040209.
[11] Mohammed, M.N., Omar, M.Z., Al-Zubaidi, S., Alhawari, K.S. & Abdelgnei, M.A. (2018). Microstructure and mechanical properties of thixowelded AISI D2 tool steel. Metals. 8, 316. https://doi.org/10.3390/met8050316.
[12] Flemings, M. (1991). Behavior of metal alloys in the semisolid state. Metallurgical Transactions B. 22B, 269-293. https://doi.org/10.1007/BF02651227.
[13] Modigell, M., Pola, A. & Tocci, M. (2018). Rheological characterization of semi-solid metals: a review. Metals. 8, 245. https://doi.org/10.3390/met8040245.
[14] Li, Y., Zhou, R., Li, L., Xiao, H. & Jiang, Y. (2018). Microstructure and properties of semi-solid ZCuSn10P1 alloy processed with an enclosed cooling slope channel. Metals. 8, 275. https://doi.org/10.3390/met8040275.
[15] Jiang, J., Xiao, G., Che, C. & Wang, Y. (2018). Microstructure, mechanical properties and wear behavior of the rheoformed 2024 aluminum matrix composite component reinforced by Al2O nanoparticles. Metals. 8, 460. https://doi.org/10.3390/met8060460.
[16] He, M., Zhang, Z., Mao, W., Li, B., Bai, Y. & Xu, J. (2019). Numerical and experimental study on melt treatment for large-volume 7075 alloy by a modified annular electromagnetic stirring. Materials. 12, 820. https://doi.org/10.3390/ma12050820.
[17] Nakato, H., Oka, M., Itoyama, S., Urata, M., Kawasaki, T., Hashiguchi, K. & Okano, S. (2002). Continuous semi-solid casting process for aluminum alloy billets. Materials Transactions. 43, 24-29. https://doi.org/10.2320/matertrans.43.24.
[18] Mikolajczak, P., Janiszewski, J. & Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Gapiński B., Szostak M., Ivanov V. (Eds.), Advances in manufacturing II. Vol. 4. Mechanical Engineering (pp. 164-175). Cham, Switzerland, Springer. https://doi.org/10.1007/978-3-030-16943-5_15.
[19] Mikolajczak, P. (2023). Distribution and Morphology of α-Al, Si and Fe-Rich Phases in Al–Si–Fe Alloys under an Electromagnetic Field. Materials. 16, 3304. https://doi.org/10.3390/ma16093304.
[20] Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. Metals. 7, 89. https://doi.org/10.3390/met7030089.
[21] Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11, 1804. https://doi.org/10.3390/met11111804.
[22] Mikolajczak, P. & Ratke, L. (2015). Thermodynamic assessment of mushy zone in directional solidification. Archives of Foundry Enginering. 15(4), 101-109. DOI: 10.1515/afe-2015-0088.
[23] Belov, N.A., Aksenov, A.A., Eskin, D.G. (2002). Iron in Aluminium Alloys—Impurity and Alloying Element. 1st ed. London, UK: Taylor and Francis Group. https://doi.org/10.1201/9781482265019.
[24] Shabestari, S.G. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys. Materials Science and Engineering: A. 383(2), 289-298. https://doi.org/10.1016/j.msea.2004.06.022.
[25] Thermo-Calc 4.1—Software package from Thermo-Calc Software AB. Stockholm. Sweden. Retrieved June 10, 2023, from www.thermocalc.se.
[26] Fang, X., Shao, G., Liu, Y.Q. & Fan. Z. (2007). Effects of intensive forced melt convection on the mechanical properties of Fe containing Al-Si based alloys. Materials Science and Engineering: A. 445-446, 65-72. https://doi.org/10.1016/j.msea.2006.09.038.
[27] Nafisi, S., Emad, D., Shehata, T. & Ghomashchi, R. (2006). Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy. Materials Science and Engineering: A. 432(1-2), 71-83. https://doi.org/10.1016/j.msea.2006.05.076.
[28] Steinbach, S., Euskirchen, N., Witusiewicz, V., Sturz, L. & Ratke, L. (2007). Fluid flow effects on intermetallic phases in Al-cast alloys. Transactions of Indian Institute of Metals. 60(2), 137-141. https://doi.org/10.4028/www.scientific.net/ MSF.519-521.1795.
[29] Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26, 339-353. https://doi.org/10.1179/1743133613Y.0000000069.
[30] Jie, J.C., Zou, Q.C., Wang, H.W., Sun, J.L. & Lu, Y.P., Wang, T.M., Li, T.J. (2014). Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field. Journal of Crystal Growth. 399, 43-48. http://dx.doi.org/10.1016/j.jcrysgro.2014.04.003.
[31] Wenzhou, Y., Wenhui, M., Guoqiang, L., Haiyang, X., Li, S. & Dai, Y. (2014). Efect of electromagnetic stirring on the enrichment of primary silicon from Al-Si melt. Journal of Crystal Growth. 405, 23-28. http://dx.doi.org/ 10.1016/j.jcrysgro.2014.07.035.
[32] Ma, X., Lei, Y., Yoshikawa, T., Zhao, B. & Morita, K. (2015). Effect of solidification conditions on the silicon growth and refining using Si-Sn melt. Journal of Crystal Growth. 430, 98-102. http://dx.doi.org/10.1016/ j.jcrysgro.2015.08.001.
[33] Zhu, K., Hu, J., Ma, W., Wei, K., Lv, T. & Dai, Y.(2019). Effect of solidification parameters and magnetic field on separation of primary silicon from hypereutectic Ti-85 wt.% Si melt. Journal of Crystal Growth. 522, 78-85. https://doi.org/10.1016/j.jcrysgro.2019.05.012. [34] Li, Y., Liu, L. & Chen, J. (2021). Effect of mechanical stirring on silicon purification during Al-Si solvent refining. Journal of Crystal Growth. 553, 125943. https://doi.org/10.1016/j.jcrysgro.2020.125943
[35] Ban, B., Li, Y., Zou, Q., Zhang, T., Chen, J. & Dai, S. (2015). Refining of metallurgical grade Si by solidification of Al-Si melt under electromagnetic stirring. Journal of Materials Processing Technology. 222, 142-147. http://dx.doi.org/10.1016/j.jmatprotec.2015.03.012.
[36] Zhang, Y., Miao, X., Shen, Z., Han, Q., Song, C. & Zhai, Q. (2015). Macro segregation formation of the primary silicon phase in directionally solidified Al-Si hypereutectic alloys under the impact of electric currents. Acta Materialia. 97, 357-366. http://dx.doi.org/10.1016/j.actamat.2015.07.002. [37] Li, J., Ni, P., Wang, L. & Tan, Y. (2017). Influence of direct electric current on solidification process of Al-Si alloy. Materials Science Semiconductor Processing. 61, 79-84. http://dx.doi.org/10.1016/j.mssp.2016.12.034.
[38] Lv, G., Bao, Y., Zhang, Y., He, Y., Ma, W. & Leu, Y. (2018). Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al-Si alloy with high Si content. Materials Science Semiconductor Processing. 81, 139-148. https://doi.org/10.1016/ j.mssp.2018.03.006.
[39] Yoshikawa, T. & Morita, K. (2005). Refining of Si by the solidification of Si-Al melt with electromagnetic force. ISIJ International. 45, 7, 967-971. https://doi.org/10.2355/ isijinternational.45.967.
[40] Huang, F., Zhao, L., Liu, L., Hu, Z., Chen, R. & Dong, Z. (2019). Separation and purification of Si from Sn-30Si alloy by electromagnetic semi-continuous directional solidification. Materials Science in Semiconductor Processing. 99, 54-61. https://doi.org/10.1016/ j.mssp.2019.04.015.
[41] He, Y., Yang, X., Duan, L., Li, S., Chen, Z., Ma, W., Lv, G. & Xing, A. (2021). Silicon separation and purification process from hypereutectic aluminum-silicon for organosilicon use. Materials Science in Semiconductor Processing. 121, 105333. https://doi.org/10.1016/ j.mssp.2020.105333.
[42] Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phases during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10. https://doi.org/10.3390/ma12010010.
[43] Xue, H., Lv, G., Ma, W., Chen, D. & Yu, J. (2015). Separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields. Metallurgical and Materials Transactions A. 46, 2922-2932. DOI: 10.1007/s11661-015-2889-1.
[44] Li, X., Ren, Z. & Fautrelle, Y. (2009). Effect of a high magnetic field on the distribution of the solute Si and the morphology of the primary Si phase. Materials Letters. 63, 1235-1238. doi:10.1016/j.matlet.2009.02.030.
[45] Sun, Jl., Zou, Qc., Jie, Jc. & Li, T. (2016). Separation of primary Si and impurity boron removal from Al-30%Si-10%Sn melt under a traveling magnetic field. China Foundry. 13, 4, 284-288. https://doi.org/10.1007/s41230-016-6036-4.
[46] Zou, Q., Tian, H., Zhang, Z., Sun, C., Jie, J., Han, N. & An, X. (2020). Controlling segregation behaviour of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Metals. 10, 1129. https://doi.org/10.3390/met10091129.
[47] Zou, Q., Han, N., Zhang, Z., Jie, J., Xu, F. & An, X. (2020). Enhancing segregation behaviour of impurity by electromagnetic stirring in the solidification process of Al-30Si alloy. Metals. 10, 155. doi:10.3390/met10010155.
[48] Zou, Q., Jie, J., Wang, T. & Li, T. (2016). An efficient method to purify metallurgical grade Si by electromagnetic semi-continuous casting of Al-30Si melt. Materials Letters. 185, 59-62. http://dx.doi.org/10.1016/j.matlet.2016.08.103.
[49] Kurz, W., Fisher, D.J. Fundamentals of Solidification. Switzerland: Trans Tech Publications.
[50] Dantzig, J.A., Rappaz, M. (2009). Solidification. Lausanne, Switzerland: EPFL Press.
[51] Stefanescu, D. (2009). Science and Engineering of Casting and Solidification. Boston, MA, USA: Springer. https://doi.org/10.1007/b135947.
[52] Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
[53] Martinez, R.A. & Flemings, M.C. (2005). Evolution of particle morphology in semisolid processing. Metallurgical and Materials Transactions A. 36, 2205-2210. https://doi.org/10.1007/s11661-005-0339-1.
[54] Niroumand, B. & Xia, K. (2000). 3D study of the structure of primary crystals in a rheocast Al-Cu alloy. Materials Science and Engineering A. 283(1-2), 70-75. https://doi.org/10.1016/S0921-5093(00)00619-5.
[55] Birol, Y. (2007). A357 thixoforming feedstock produced by cooling slope casting. Journal of Materials Processing Technology. 186(1-3), 94-101. https://doi.org/10.1016/ j.jmatprotec.2006.12.021.
[56] Das, A., Ji, S. & Fan, Z. (2002). Morphological development of solidification structures under forced fluid flow: A Monte Carlo simulation. Acta Materialia. 50(18), 4571-4585. https://doi.org/10.1016/S1359-6454(02)00305-1.
[57] Li, T., Lin, X. & Huang, W. (2006). Morphological evolution during solidification under stirring. Acta Materialia. 54, 4815-4824. https://doi.org/10.1016/ j.actamat.2006.06.013.
[58] Mullis, A. (1999). Growth induced dendritic bending and rosette formation during solidification in a shearing flow. Acta Materialia. 47, 1783-1789. https://doi.org/10.1016/ S1359-6454(99)00052-X.
[59] Marsh, S.P. & Glicksman, M.E. (1996). Overview of geometric effects on coarsening of mushy zones. Metallurgical and Materials Transactions A. 27, 557-567. https://doi.org/10.1007/BF02648946.
[60] Loué, W.R. & Suéry, M. (1995). Microstructural evolution during partial remelting of AlSi7Mg alloys. Materials Science and EngineeringA A. 203(1-2), 1-13. https://doi.org/10.1016/0921-5093(95)09861-5.
[61] Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. The Minerals, Metals & Materials Society. TMS. 10, 9781118062173. https://doi.org/10.1002/9781118062173.ch104.
Go to article

Authors and Affiliations

Piotr Mikołajczak
1
ORCID: ORCID

  1. Poznan University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of calculations and measurements of the first natural frequency of castings of solid and ventilated brake discs made of gray cast iron of the EN-GJL-200 class. The tests were carried out for three types of chemical composition, taking into account the permissible minimum and maximum content of alloying elements. Numerical simulations of natural vibrations were carried out on the basis of our own production material databases. To determine the elastic properties of cast iron, the ultrasonic method with the measurement of the propagation velocity of longitudinal and transverse waves was used. Measurements were made directly on casts of raw discs of various thicknesses. The values of Young's modulus and Poisson's number calculated from ultrasonic measurements were used to define the stiffness matrix in the equilibrium equation, which is solved by the solver of the MSC Nastran program. A high compatibility between the results of numerical simulations and the results of experimental FRF frequency analysis was obtained. The differences between the calculated and actual values were at the level of several hertz, while the estimated average error of numerical simulations was 0.76%. It was also found out that cast iron melts for brake discs must be subject to strict control in terms of chemical composition. Slight deviations of the eutectic saturation coefficient from the optimal value cause a significant change in the first natural frequency of the brake discs, regardless of their geometry.
Go to article

Bibliography

[1] Zagrajek, T., Krzesiński, G., Marek, P. (2006). Finite element method in structural mechanics. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej. (in Polish).
[2] Qatu, M.S., Abdelhamid, M.K., Pang J. & Sheng, G. (2009). Overview of automotive noise and vibration. International Journal of Vehicle Noise and Vibration. 5(1-2), 1-35. https://doi.org/10.1504/IJVNV.2009.029187.
[3] Lü, H. & Yu, D. (2014). Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization. Journal of Sound and Vibration. 333(26), 7313-7325. https://doi.org/10.1016/j.jsv.2014.08.027.
[4] Yoon, J., Park, J. & Min, S. (2022). Optimal disc brake design for reducing squeal instability using slip-dependent complex eigenvalue analysis. Mechanical Systems and Signal Processing. 177, 109240. https://doi.org/10.1016/j.ymssp. 2022.109240.
[5] Liu, P., Zheng, H., Cai, C., Wang, Y.Y., Lu, C., Ang, K.H. & Liu G.R. (2007). Analysis of disc brake squeal using the complex eigenvalue method. Applied Acoustics. 68(6), 603-615. https://doi.org/10.1016/j.apacoust.2006.03.012.
[6] Sinou, J.-J. (2010). Transient non-linear dynamic analysis of automotive disc brake squeal – On the need to consider both stability and non-linear analysis. Mechanics Research Communications. 37(1), 96-105. https://doi.org/10.1016/ j.mechrescom.2009.09.002.
[7] Nouby, M., Mathivanan, D. & Srinivasan, K. (2009). A combined approach of complex eigenvalue analysis and design of experiments (DOE) to study disc brake squeal. International Journal of Engineering, Science and Technology. 1(1), 254-271. DOI: 10.4314/ijest.v1i1.58084 .
[8] Armstrong, P.E., in: R.F. Bunshan (Ed.) (1971). Measurement of Mechanical Properties, Techniques of Metals Research. vol. V (Part 2). New York: Wiley.
[9] Radovic, M., Lara-Curzio, E., Riester, L. (2004). Comparison of different experimental techniques for determination of elastic properties of solids. Materials Science and Engineering A. 368(1-2), 56-70. https://doi.org/10.1016/ j.msea.2003.09.080.
[10] Migliori, A., Sarrao, J.L. (1997). Resonant Ultrasound Spectroscopy: Applications to Physics. Materials Measurements and Nondestructive Evaluation. , New York: Wiley.
[11] Wadsworth, H.M. (1990). Handbook of Statistical Methods for Engineers and Scientists. New York: Mc-Graw-Hill.
[12] WT/054/PIMOT/93 (1993). Brake discs of motor vehicles. Security requirements. (in Polish).
[13] Wehr, J. (1972). Measurements of the speed and attenuation of ultrasonic waves. Warszawa: PWN.
[14] Konopka, Z., Łągiewka, M. & Zyska, A. (2020). Influence of cast iron modification on free vibration frequency of casting. Archives of Foundry Engineering. 20(1), 23-26. DOI: 10.24425/afe.2020.131277.
Go to article

Authors and Affiliations

Andrzej Zyska
1
ORCID: ORCID
Mariusz Bieroński
2
ORCID: ORCID

  1. Department of Metallurgy and Metal Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
  2. Brembo Poland Sp. z o.o., ul. Roździeńskiego 13, 41-308 Dąbrowa Górnicza
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the kinetics of the binding process of self-hardening moulding sands with an organic binder under conditions of forced air flow at various pressure values. Three moulding sands made using urea-furfuryl resin Furanol FR75A technology were studied. The moulding sands were prepared on a base of quartz sand with an average grain size of dL = 0.25, 0.29 and and 0.37 mm , with permeability values of 306 , 391 and and 476 m 2/10 8Pa ∙ s (for ρ0 = 1.60 , 1.60 and and 1.61 g/cm 3, respectively). The research was conducted for a resin content of 1% with a constant proportion of hardener to resin, which was equal to 50%. Samples of the tested moulding sands were blown with air at pressures of 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 bar. The kinetics of the hardening process was monitored using ultrasound technology, according to a previously developed methodology [1]. The research was carried out on an ultrasound testing station equipped with a temperature chamber and an airflow reducer. The tests were conducted at a temperature of 20°C, and of the air flow pressure on the changes in ultrasonic wave velocity in the hardening mouldins sand as a function of time, the kinetics of the hardening process, and the degree of moulding sand hardening were determined. Additionally, the influence of the moulding sand permeability on the course of the hardening process at a constant air flow pressure was determined.
Go to article

Bibliography

[1] Zych, J. (2007). Synthesis of the applications of ultrasonic technology in the analysis of the kinetics of selected processes occurring in molding materials. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne. Seria: Rozprawy i Monografie nr 163, Kraków. (in Polish).
[2] Holtzer, M., Kmita, A. & Roczniak, A. (2014). New furfuryl resins more environmentally friendly. Archives of Foundry Engineering. 14(spec.4), 51-54. (in Polish).
[3] Lewandowski, J.L. (1997). Materials for casting molds. Kraków: Wydawnictwo Akapit. (in Polish).
[4] Lewandowski, J.L (1971). Molding materials. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
[5] Dobosz, St.M. (2006). Water in molding and core sands. Kraków: Wydawnictwo Akapit. (in Polish).
[6] Drożyński, D. (1999). Post-surface phenomena in the process of binding masses in the classic cold-box technology. Unpublished doctoral dissertation, AGH Univesity of Science and Technology, Kraków. (in Polish).
[7] Lewandowski, J.L. (1991). Molding and core sands. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
[8] Jamrozowicz, Ł., Kolczyk, J. & Kaźnicva, N. (2016). Study of the hardening kinetics of self-hardening masses at low temperature. Prace Instytutu Odlewnictwa. LVI, 4/2016, 379-390. (in Polish).
[9] Matonis, N. & Zych, J. (2022). Plasticity changes of moulding sands with chemical binders caused by increasing the hardenin degree. Archives od Foundry Engineering. 22(2), 71-76. DOI: 10.24425/afe.2022.140227.
[10] Zych, J. (1999). Patent Nr PL 192202 B1. Kraków
Go to article

Authors and Affiliations

Natalia Matonis
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the wire drawing process of wire brass using different deformation degree and using selected lubricants of different viscosity. The material used for the study was CuZn39Pb3 wire, which was obtained under laboratory horizontal continuous casting process using graphite crystallizer. A cast brass rod with a diameter of 9.4 mm was drawn in laboratory conditions to a diameter of 3 mm and then drawn in one operation to a diameter of 2.9 mm, 2.65 mm or 2.4 mm. Before the final deformation process, the wire surfaces were properly prepared. Based on the results obtained, the drawing tension was used to draw conclusions. The oxide surface has been shown to increase drawing tension and decrease quality of wires, while the surface that has been etched prior to deformation has a beneficial effect both on the reduction of the strength parameters of the drawing process as well as on the improvement of its quality. In addition, it has been shown that despite the emulsion has lowest dynamic viscosity that’s protect wire surface well, decrease the drawing force at high unit loads.
Go to article

Bibliography

[1] Wright, R.N. (2016). A Brief History of Technology. In Wire Technology: Process Engineering and Metallurgy (7-12). USA: Elsevier Ltd.
[2] Lenard, J.G. (2002). Friction, Lubrication and Surface Response in Wire Drawing. In Metal Forming Science and Practice (297-312). USA: Elsevier Ltd.
[3] Blake-Coleman, B.C. (1992). Wire making Technology. In Copper Wire and Electrical Conductors - The Shaping of a Technology (1-73). Switzerland: Harwood Academic Publishers.
[4] Calladine, C.R. (1969). Engineering Plasticity. UK: Elsevier Ltd., 235-274.
[5] Byon, S.M., Lee, S. J., Lee, D.W., Lee, Y. H. & Lee, Y. (2011). Effect of coating material and lubricant on forming force and surface defects in wire drawing process. Transactions of Nonferrous Metals Society of China. China, 21(1), 104-110. https://doi.org/10.1016/S1003-6326(11)61071-6 .
[6] Xu, D.C., Zhai, S.Y., Cheng, H.Y., Guadie, A., Wang, H.C., Han, J.L., Liu, C.Y. & Wang, A.J. (2020). Wire-drawing process with graphite lubricant as an industrializable approach to prepare graphite coated stainless-steel anode for bioelectrochemical systems. Environmental Research. 191, 110093, 1-9. https://doi.org/10.1016/j.envres.2020.110093 .
[7] Utsunomiy, H., Takagishi, S., Ito, A. & Matsumoto, R. (2013). Lubrication using porous surface layer for cold drawing of steel wire. CIRP Annals. 62(1), 235-238. https://doi.org/10.1016/j.cirp.2013.03.120 .
[8] Arentoft, M., Bay, N., Tang, T.P. & Jensen, D.J. (2009). A new lubricant carrier for metal forming. CIRP Annals. 58(1), 243-246. https://doi.org/10.1016/j.cirp.2009.03.062 .
[9] Dixit, U.S. & Dixit, P.M. (1995). An analysis of the steady-state wire drawing of strain-hardening materials. Journal of Materials Processing Technology. 47(3-4), 201-229. https://doi.org/10.1016/0924-0136(95)85000-7 .
[10] Moon, C. & Kim, N. (2012). Analysis of wire-drawing process with friction and thermal conditions obtained by inverse engineering. Journal of Mechanical Science and Technology. 26(9), 2903-2911. ttps://doi.org/10.1007/ s12206-012-0711-1 .
[11] El-Domiaty, A. & Kassab, S. Z. (1998). Temperature rise in wire-drawing. Journal of Materials Processing Technology. 83(1-3), 72-83. https://doi.org/10.1016/S0924-0136(98)00045-4 .
[12] Liu, S., Shan, X., Guo, K., Yang, Y. & Xie, T. (2018). Experimental study on titanium wire drawing with ultrasonic vibration. Ultrasonics, 83, 60-67. https://doi.org/10.1016/j.ultras.2017.08.003.
[13] Du, P., Kishimoto, T. & Furushima, T. (2023). Uniforming outer diameter by control of microstructural evolution for biodegradable ZM21 magnesium alloy tube during dieless drawing. Journal of Materials Processing Technology. 312, 117831, 1-12. https://doi.org/10.1016/j.jmatprotec. 2022.117831 .
[14] Tiernan, P. & Hillery, M. T. (2008). An analysis of wire manufacture using the dieless drawing method. Journal of Manufacturing Processes. 10(1), 12-20. https://doi.org/10.1016/j.manpro.2008.05.001 .
[15] Wang, Z.T., Luan, G.F. & Bai, G.R. (1999). Study of the deformation velocity field and drawing force during the dieless drawing of tube. Journal of Materials Processing Technology. 94(2-3), 73-77. https://doi.org/10.1016/S0924-0136(98)00452-X .
[16] El Amine, K., Larsson, J. & Pejryda, L. (2018). Experimental comparison of roller die and conventional wire drawing. Journal of Materials Processing Technology. 257, 7-14. https://doi.org/10.1016/j.jmatprotec.2018.02.012.
[17] Pilarczyk, J.W., Van Houtte, P. & Aernoudt, E. (1995). Effect of hydrodynamic and roller die drawing on the texture of high carbon steel wires. Materials Science and Engineering: A. 197(1), 97-101. https://doi.org/10.1016/0921-5093(94)09756-9.
[18] Kwaśniewski, P., Knych, T., Mamala, A., Kiesiewicz, G., Walkowicz, M., Smyrak, B., Kawecki, A., Uliasz, P. & Piwowarska, M. (2014). PL 218241 B1. Method for continuous casting of crystalline materials and apparatus for horizontal continuous casting of crystalline materials. Patent Office of the Republic of Poland, 2-14.
[19] EN 12164. (2016). Copper and copper alloys - Rod for free machining purposes. European Standards, 23.
[20] Łuksza, J. (2001). Elementy ciągarstwa. Polska: Wydaw. AGH. [21] PN-EN ISO 6892-1. (2020). Metals - Tensile Test - Part 1: Room Temperature Test Method. International Organization for Standardization.
[22] PN-EN ISO 21920-1. (2022). Geometrical product specifications (GPS) — Surface texture: Profile - Part 1: Indication of surface texture. International Organization for Standardization.
[23] Portevin, A. & Le Chatelier, F. (1923). Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation. Comptes Rendus de l’Académie des Sciences Paris, 176, 507-510.
[24] Cottrell, A.H. (1953). A note on the Portevin–Le Chatelier effect. Philosophical Magazine. 44, 829-832.
Go to article

Authors and Affiliations

Michał Jabłoński
1
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The 17-4 PH Stainless Steel material is known for its higher strength and, therefore, extensively used to build structures for aerospace, automotive, biomedical, and energy applications. The parts must operate satisfactorily in different environmental conditions to widen the diverse application. The selective laser melting (SLM) technique build parts cost-effectively, ensuring near-net shape manufacturability. Laser power, scan speed, and hatch distance operating at different conditions were used to develop parts and optimize for higher density in printed parts. Laser power, scan speed, and hatch distance resulted in the percent contribution towards density equal to 73.74%, 24.48%, and 1.78%. The optimized conditions resulted in higher density and relative density equal to 7.76 g/cm 3 and 99.48%. Printed parts' corrosion rate and wear loss showed more stability in NaCl corrosive medium even at 75 °C than 1M of HCL corrosive medium. Less pitting corrosion was observed on the samples treated in NaCl solution at 25 °C and 75 °C at 72 Hrs than in HCL solution. Therefore, 17-4 PH SS parts are best suited even in marine applications.
Go to article

Bibliography

[1] Hou, B., Li, X., Ma, X., Du, C., Zhang, M., Zheng, M., Xu, W., Lu, D. & Ma, F. (2017). The cost of corrosion in China. Materials Degradation. 1(1), 4. DOI:10.1038/s41529-017-0005-2.
[2] Khan, M.A.A., Hussain, M. & Djavanroodi, F. (2021). Microbiologically influenced corrosion in oil and gas industries: A review. International Journal of Corrosion and Scale Inhibition. 10(1), 80-106. DOI: 10.17675/2305-6894-2021-10-1-5.
[3] Bhandari, J., Khan, F., Abbassi, R., Garaniya, V. & Ojeda, R. (2015). Modelling of pitting corrosion in marine and offshore steel structures–A technical review. Journal of Loss Prevention in the Process Industries. 37, 39-62. https://doi.org/10.1016/j.jlp.2015.06.008.
[4] Abbas, M. & Shafiee, M. (2020). An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures. 71, 102718. https://doi.org/10.1016/j.marstruc. 2020.102718.
[5] Chalisgaonkar, R. (2020). Insight in applications, manufacturing and corrosion behaviour of magnesium and its alloys–A review. Materials Today: Proceedings. 26, 1060-1071. https://doi.org/10.1016/j.matpr.2020.02.211.
[6] Zhu, J., Li, D., Chang, W., Wang, Z., Hu, L., Zhang, Y., ... & Zhang, L. (2020). In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of western Pacific Ocean. Journal of Materials Research and Technology. 9(4), 8104-8116. https://doi.org/10.1016/j.jmrt.2020.05.060.
[7] Swamy, P.K., Mylaraiah, S., Gowdru Chandrashekarappa, M.P., Lakshmikanthan, A., Pimenov, D.Y., Giasin, K. & Krishna, M. (2021). Corrosion behaviour of high-strength Al 7005 alloy and its composites reinforced with industrial waste-based fly ash and glass fibre: comparison of stir cast and extrusion conditions. Materials. 14(14), 3929. https://doi.org/10.3390/ma14143929.
[8] Varol, T., Güler, O., Yıldız, F. & Suresh Kumar, S. (2022). Additive manufacturing of non-ferrous metals. In Innovations in Additive Manufacturing. (pp. 91-120). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-89401-6_5.
[9] Mahmoodian, M. (2018). Introduction. In: Reliability and maintainability of in-service pipelines. India: Elsevier.
[10] Ssenteza, V., Eklund, J., Hanif, I., Liske, J. & Jonsson, T. (2023). High temperature corrosion resistance of FeCr (Ni, Al) alloys as bulk/overlay weld coatings in the presence of KCl at 600° C. Corrosion Science. 213, 110896. https://doi.org/10.1016/j.corsci.2022.110896.
[11] Folkeson, N., Jonsson, T., Halvarsson, M., Johansson, L.G. & Svensson, J.E. (2011). The influence of small amounts of KCl (s) on the high temperature corrosion of a Fe‐2.25 Cr‐1Mo steel at 400 and 500° C. Materials and Corrosion. 62(7), 606-615. https://doi.org/10.1002/maco.201005942.
[12] Müller, P., Pernica, V. & Kaňa, V. (2022). Corrosion resistance of cast duplex steels. Archives of Foundry Engineering, 22(3), 5-10. DOI: 10.24425/afe.2022.140230.
[13] Francis, R. & Byrne, G. (2018). The erosion corrosion limits of duplex stainless steels. Materials Performance. 57(5), 44-47.
[14] Sahu, S., Swanson, O.J., Li, T., Gerard, A.Y., Scully, J.R. & Frankel, G.S. (2020). Localized corrosion behavior of non-equiatomic NiFeCrMnCo multi-principal element alloys. Electrochimica acta. 354, 136749. https://doi.org/10.1016/ j.electacta.2020.136749.
[15] Chen, H., Kim, S.H., Kim, C. Chen, J. & Jang, C. (2019). Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650 C. Corrosion Science. 156, 16-31. https://doi.org/10.1016/j.corsci.2019.04.043.
[16] Zai, L., Zhang, C., Wang, Y., Guo, W., Wellmann, D., Tong, X. & Tian, Y. (2020). Laser powder bed fusion of precipitation-hardened martensitic stainless steels: a review. Metals. 10(2), 255. https://doi.org/10.3390/met10020255.
[17] Li, J., Zhan, D., Jiang, Z., Zhang, H., Yang, Y. & Zhang, Y. (2023). Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: a review. Journal of Materials Research and Technology. 23, 172-190. https://doi.org/10.1016/j.jmrt.2022.12.177.
[18] Davanageri, M., Narendranath, S. & Kadoli, R. (2016). Dry sliding wear behavior of super duplex stainless steel AISI 2507: A statistical approach. Archives of Foundry Engineering. 16(4), 47-56.
[19] Ghaffari, M., Nemani, A. V. & Nasiri, A. (2022). Microstructure and mechanical behavior of PH 13–8Mo martensitic stainless steel fabricated by wire arc additive manufacturing. Additive Manufacturing. 49, 102374. https://doi.org/10.1016/j.addma.2021.102374.
[20] Alım, B., Özpolat, Ö.F., Şakar, E., Han, İ., Arslan, İ., Singh, V.P. & Demir, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry. 194, 110009. https://doi.org/10.1016/j.radphyschem.2022.110009.
[21] Yeganeh, M., Shoushtari, M.T. & Jalali, P. (2021). Evaluation of the corrosion performance of selective laser melted 17-4 precipitation hardening stainless steel in Ringer’s solution. Journal of Laser Applications. 33(4). https://doi.org/10.2351/7.0000445.
[22] Rafi, H.K., Pal, D., Patil, N., Starr, T.L. & Stucker, B.E. (2014). Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting. Journal of materials engineering and performance. 23, 4421-4428. https://doi.org/10.1007/s11665-014-1226-y.
[23] Hu, Z., Zhu, H., Zhang, H. & Zeng, X. (2017). Experimental investigation on selective laser melting of 17-4PH stainless steel. Optics & Laser Technology. 87, 17-25. https://doi.org/10.1016/j.optlastec.2016.07.012.
[24] Srivastava, M., Rathee, S., Tiwari, A. & Dongre, M. (2023). Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour. Materials Chemistry and Physics. 294, 126988. https://doi.org/10.1016/j.matchemphys.2022.126988.
[25] Piekło, J. & Garbacz-Klempka, A. (2021). Use of selective laser melting (SLM) as a replacement for pressure die casting technology for the production of automotive casting. Archives of Foundry Engineering. 21(2), 9-16. DOI: 10.24425/afe.2021.136092.
[26] Fuchs, S.L., Praegla, P.M., Cyron, C.J., Wall, W.A. & Meier, C. (2022). A versatile SPH modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusion. Engineering with Computers. 38(6), 4853-4877. https://doi.org/10.1007/s00366-022-01724-4.
[27] Zhu, Y.Y., Tang, H.B., Li, Z., Xu, C. & He, B. (2019). Solidification behavior and grain morphology of laser additive manufacturing titanium alloys. Journal of Alloys and Compounds. 777, 712-716. https://doi.org/10.1016/ j.jallcom.2018.11.055.
[28] Sheshadri, R., Nagaraj, M., Lakshmikanthan, A., Chandrashekarappa, M.P.G., Pimenov, D.Y., Giasin, K., ... & Wojciechowski, S. (2021). Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: Taguchi and super ranking concept approaches. Journal of Materials Research and Technology, 14, 2586-2600. https://doi.org/10.1016/ j.jmrt.2021.07.144.
[29] Li, R., Shi, Y., Wang, Z., Wang, L., Liu, J. & Jiang, W. (2010). Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science. 256(13), 4350-4356. https://doi.org/10.1016/j.apsusc.2010.02.030.
[30] Averyanova, M., Cicala, E., Bertrand, P., Grevey, D. (2012). Experimental design approach to optimize selective laser melting of martensitic 17-4 PH powder: part Iesingle laser tracks and first layer. Rapid Prototyping Journal. 18(1), 28e37. https://doi.org/ 10.1108/13552541211193476
[31] Razavykia, A., Brusa, E., Delprete, C. & Yavari, R. (2020). An overview of additive manufacturing technologies—a review to technical synthesis in numerical study of selective laser melting. Materials. 13(17), 3895. https://doi.org/10.3390/ma13173895.
[32] Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., Stucker B, Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. In 2013 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2013-August.
[33] Rashid, R., Masood, S.H., Ruan, D., Palanisamy, S., Rashid, R.R. & Brandt, M. (2017). Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM). Journal of Materials Processing Technology. 249, 502-511. https://doi.org/10.1016/j.jmatprotec.2017.06.023.
[34] Weissman, S.A. & Anderson, N.G. (2015). Design of experiments (DoE) and process optimization. A review of recent publications. Organic Process Research & Development. 19(11), 1605-1633. https://doi.org/10.1021/op500169m.
[35] Spall, J.C. (1998). An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins apl technical digest. 19(4), 482-492.
[36] Yap, C.Y., Chua, C.K. & Dong, Z.L. (2016). An effective analytical model of selective laser melting. Virtual and Physical Prototyping. 11(1), 21-26. https://doi.org/10.1080/ 17452759.2015.1133217.
[37] Pawlak, A., Rosienkiewicz, M. & Chlebus, E. (2017). Design of experiments approach in AZ31 powder selective laser melting process optimization. Archives of Civil and Mechanical Engineering. 17, 9-18. https://doi.org/10.1016/j.acme.2016.07.007.
[38] Sun, J., Yang, Y. & Wang, D. (2013). Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Optics & Laser Technology. 49, 118-124. https://doi.org/10.1016/j.optlastec.2012.12.002.
[39] Bai, Y., Yang, Y., Xiao, Z., Zhang, M. & Wang, D. (2018). Process optimization and mechanical property evolution of AlSiMg0. 75 by selective laser melting. Materials & Design. 140, 257-266. https://doi.org/10.1016/j.matdes.2017.11.045.
[40] Larimian, T., Kannan, M., Grzesiak, D., Al Mangour, B. & Borkar, T. (2020). Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A. 770, 138455. https://doi.org/10.1016/j.msea.2019.138455.
[41] Pearson, P. & Cousins, A. (2016). Assessment of corrosion in amine-based post-combustion capture of carbon dioxide systems. Absorption-based post-combustion capture of carbon dioxide. 439-463. https://doi.org/10.1016/B978-0-08-100514-9.00018-4.
[42] Martin, S., Lepaumier, H., Picq, D., Kittel, J., De Bruin, T., Faraj, A. & Carrette, P.L. (2012). New amines for CO2 capture. IV. Degradation, corrosion, and quantitative structure property relationship model. Industrial and Engineering Chemistry Research. 51(18), 6283-6289. https://doi.org/10.1021/ie2029877.
[43] Cherry, J.A., Davies, H.M., Mehmood, S., Lavery, N.P., Brown, S.G.R., & Sienz, J. (2015). Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. The International Journal of Advanced Manufacturing Technology. 76, 869-879. 8), 6283-6289. https://doi.org/10.1021/ie2029877.
[44] Davidson, K. & Singamneni, S. (2016). Selective laser melting of duplex stainless steel powders: an investigation. Materials and Manufacturing Processes. 31(12), 1543-1555. https://doi.org/10.1080/10426914.2015.1090605.
[45] Suwanpreecha, C., Seensattayawong, P., Vadhanakovint, V. & Manonukul, A. (2021). Influence of specimen layout on 17-4PH (AISI 630) alloys fabricated by low-cost additive manufacturing. Metallurgical and Materials Transactions A. 52, 1999-2009. https://doi.org/10.1007/s11661-021-06211-x.
[46] Dilip, J.J.S., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D. & Stucker, B. (2017). Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Progress in Additive Manufacturing. 2, 157-167. https://doi.org/10.1007/s40964-017-0030-2.
[47] Tian, Y., Tomus, D., Rometsch, P. & Wu, X. (2017). Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Additive Manufacturing. 13, 103-112. https://doi.org/10.1016/ j.addma.2016.10.010.
[48] Gong, H., Rafi, K., Gu, H., Starr, T. & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing. 1, 87-98. https://doi.org/10.1016/j.addma.2014.08.002.
[49] Wen, S., Wang, C., Zhou, Y., Duan, L., Wei, Q., Yang, S. & Shi, Y. (2019). High-density tungsten fabricated by selective laser melting: Densification, microstructure, mechanical and thermal performance. Optics & Laser Technology. 116, 128-138. https://doi.org/10.1016/j.optlastec.2019.03.018.
[50] Meier, H. & Haberland, C. (2008). Experimental studies on selective laser melting of metallic parts. Materialwissenschaft und Werkstofftechnik. 39(9), 665-670. DOI: 10.1002/mawe.200800327.
[51] Garcia-Cabezon, C., Castro-Sastre, M.A., Fernandez-Abia, A.I. et al. (2022). Microstructure–hardness–corrosion performance of 17–4 precipitation hardening stainless steels processed by selective laser melting in comparison with commercial alloy. Metals and Materials International. 28, 2652–2667. https://doi.org/10.1007/s12540-021-01155-8.
Go to article

Authors and Affiliations

Priya Sahadevan
1
Chithirai Pon Selvan
2
ORCID: ORCID
G C Manjunath Patel
3
ORCID: ORCID
Amiya Bhaumik
1

  1. Lincoln University College Selangor, Malaysia
  2. Curtin University Dubai, United Arab Emirates
  3. PES Institute of Technology and Management, Shivamogga, Visvesvaraya Technological University, Belagavi, India
Download PDF Download RIS Download Bibtex

Abstract

Air entrainment defect is a common type of defect in the casting process, which will seriously affect the quality of the casting. Numerical simulation technology can predict the occurrence of casting defects according to the evolution law of liquid metal in the process of fill ing and solidification. The simulation of air entrainment process is a hot and difficult issue in the field of numerical simulation. The evolution law of air entrainment and the tracking of induced bubbles in the process of metal filling are still lacking. So is the quantitative prediction of trained gas. In this paper, based on the numerical simulation software of Inte CAST, this paper proposes an algorithm for air entrainment search and tracking, which is used to develop a quantitative prediction system for air entrainment. The feasibility of the system is verified through the simulation calculation of the typical test pieces of the air entrainment and the prediction of air entrainment defects of the casting in the process of filling is obtained through the simulation calculation of the actual casting, which can provide a certain guiding role for the optimization of the process in the production practice.
Go to article

Bibliography

[1] Hu, L., Feng, Z.P., Feng, L., Duan, S.P. & Liang, S.P. (2016). Numerical simulation of porosity defects in casting filling process. DOI:10.16410/j.issn1000-8365.2016. 02.030. (in Chinese)
[2] Bi, C. (2016). Study on numerical simulation of gas entrapment and external solidified crystals during mold filling of high pressure die casting process. Doctoral dissertation, Tsinghua University. (in Chinese).
[3] Yu, M.Q., Xia, W., Cao, W.J. & Zhou, Z.Y. (2010). Numerical simulation of filling process and air entrapment condition of Al alloy die-casting. Hot Working Technology. 01, 36-39. DOI:10.14158/j.cnki.1001-3814.2010.01.039. (in Chinese).
[4] Hernández-Ortega, Juan, J., Zamora, Rosendo, & Palacios, et al. (2007). Experimental and numerical study of air entrapment during the filling of a mould cavity in die casting. In 10th Esaform Conference on Material Forming, 18-20 April 2007 (1430-1435). Zaragoza, Spain.
[5] Guerra, F.V., Archer, L., Hardin, R.A & Beckermann C. (2019). Measurement of air entrainment during pouring of an aluminum alloy. Shape Casting. 80, 31-40. https://doi.org/10.1007/s11663-020-01998-3.
[6] Chen, Y.X., Chen, Z. & Liao, D.M. (2021). Prediction of air entrapment defect in casings based on gas phase tracking and bubble breaking criterior. Foundry. 70(07), 806-812.
[7] Caboussat, A., Picasso, M. & Rappaz, J. (2005). Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas. Journal of Computational Physics. 203(2), 626-649. https://doi.org/10.1016/ j.jcp.2004.09.009.
[8] Kimatsuka, A., Ohnaka, I., Zhu, J.D., Sugiyama, A. & Kuroki, Y.(2006). Mold filling simulation for predicting gas porosity. IHI Engineering Review. 40(2), 83-88.
[9] Yang, X., Huang, X., Dai, X., Campbell, J. & Tatler, J. (2004). Numerical modelling of entrainment of oxide film defects in filling of aluminium alloy castings. International Journal of Cast Metals Research, 17(6), 321-331. https://doi.org/10.1179/136404604225022748.
[10] Dai, X., Jolly, M., Yang, X., & Campbell, J. (2012). Modelling of liquid metal flow and oxide film defects in filling of aluminium alloy castings. IOP Conference Series Materials Science and Engineering, 33(1), 2073.
[11] Reilly, C., Green, N.R., Jolly, M.R. & Gebelin, J.C. (2013). The modelling of oxide film entrainment in casting systems using computational modelling. Applied Mathematical Modelling, 37(18-19), 8451-8466. https://doi.org/10.1016/j.apm.2013.03.061.
[12] Reilly, C., Green, N.R. & Jolly, M.R. (2013). The present state of modeling entrainment defects in the shape casting process. Applied Mathematical Modelling. 37(3), 611-628. https://doi.org/10.1016/j.apm.2012.04.032.
[13] Majidi, Hojjat, S., Beckermann, & Christoph. (2017). Modelling of air entrainment during pouring of metal castings. International Journal of Cast Metals Research. 30(5), 301-315. https://doi.org/10.1080/13640461.2017. 1307624.
[14] Cao, LiuLiao, DunmingSun, FeiChen, TaoTeng, ZihaoTang, Yulong. (2018). Prediction of gas entrapment defects during zinc alloy high-pressure die casting based on gas-liquid multiphase flow model. The International Journal of Advanced Manufacturing Technology. 94, 807-815. https://doi.org/10.1007/s00170-017-0926-5.
Go to article

Authors and Affiliations

Yajun Yin
1
Yao Xie
2
Yingchen Song
1
Xu Shen
1
Xiaoyuan Ji
1
Jianxin Zhou
1

  1. Huazhong University of Science and Technology, China
  2. State Key Laboratory of Special Rare Metal Materials, China
Download PDF Download RIS Download Bibtex

Abstract

The microalloying elements such as Nb, V are added to control the microstructure and mechanical properties of microalloyed (HSLA) steels. High chemical affinity of these elements for interstitials (N, C) results in precipitation of binary compound, nitrides and carbides and products of their mutual solubility – carbonitrides. The chemical composition of austenite, as well as the content and geometric parameters of undissolved precipitates inhibiting the growth of austenite grains is important for predicting the microstructure, and thus the mechanical properties of the material. Proper selection of the chemical composition of the steel makes it possible to achieve the required properties of the steel at the lowest possible manufacturing cost. The developed numerical model of carbonitrides precipitation process was used to simulate and predict the mechanical properties of HSLA steels. The effect of Nb and V content to change the yield strength of these steels was described. Some comparison with literature was done.
Go to article

Bibliography

[1] Adrian H. (2011). Numerical modeling of heat treatment processes. AGH Kraków. (in Polish).
[2] European Committee for Standardization (2019). Hot Rolled Products of Structural Steels: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition
[3] Jan, F., Jaka, B. & Grega, K. (2021). Grain size evolution and mechanical properties of Nb, V–Nb, and Ti–Nb boron type S1100QL steels. Metals. 11(3), 492. https://doi.org/10.3390/met11030492.
[4] Gladman, T. (1997). The physical metallurgy of microalloyed steels institute of materials. vol. 363. London, UK. Search in. [5] Blicharski, M. (2004). Materials engineering: steel. WNT: Warszawa. (in Polish).
[6] Marynowski, P., Adrian, H. & Głowacki, M. (2019) Modeling of the kinetics of carbonitride precipitation process in high-strength low-alloy steels using cellular automata method. Journal of Materials Engineering and Performance. 28(7), 4018-4025. https://doi.org/10.1007/s11665-019-04170-4.
[7] Marynowski, P., Adrian, H. & Głowacki, M. (2018). Cellular Automata model of carbonitrides precipitation process in steels. Computer Methods in Materials Science. 18(4), 120-128. ISSN 1641-8581.
[8] Marynowski, P., Adrian, H. & Głowacki, M. (2013). Cellular automata model of precipitation in microalloyed niobium steels. Computer Methods in Materials Science. 13(4), 452-459. ISSN 1641-8581.
[9] Adrian, H. (1992). Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminum. Materials Science and Technology. 8, 406-420. https://doi.org/10.1179/mst.1992.8.5.406.
[10] Adrian, H. (1995). Thermodynamic model of carbonitride precipitation in low-alloy steels with increased strength with application to hardenability tests. Kraków: AGH. (in Polish).
[11] Adrian, H. (1995). Thermodynamic calculations of carbonitride precipitation as a guide for alloy design of microalloyed steels. In Proceedings of the International Conference Microalloying'95, 11-14 June 1995(285-307). Pittsburgh.
[12] Adrian, H. (1999). A mechanism for the effect of vanadium on the hardenability of medium carbon manganese steel. Materials Science and Technology. 15, 366-378. https://doi.org/10.1179/026708399101505987.
[13] Cuddy, L.J. & Raley, J.C. (1987). Austenite grain coarsening in microalloyed steels. Metallurgical Transactions A. 14, 1989-1995. https://doi.org/10.1007/BF02662366.
[14] Cuddy, L.J. (1984). The effect of micro alloy concentration on the recrystallization of austenite during hot deformation. Processing of Microalloyed Austenite (Pittsburgh) TMS-AIME Warrendale PA.
[15] Goldschmidt, H.J. (1967). Interstitial Alloys. Butterworth-Heinermann.
[16] Lifschitz, I.M. & Slyozov, V.V. (1961). The kinetics of precipitation from supersaturated solid solution. Journal of Physics and Chemistry of Solids. 19(1/2), 35-50. https://doi.org/10.1016/0022-3697(61)90054-3.
[17] Zając, S., Siwecki, T. & Hutchinson, W.B. (1998). Lagneborg R. The role of carbon in enhancing precipitation strengthening of V-microalloyed steels. Material Science Forum. 284, 295-302. https://doi.org/10.4028/www.scientific.net/MSF.284-286.295.
[18] Langberg, R., Hutchinson, W.B., Siwecki, T. & Zając, T. (2014). The role of vanadium in microalloyed steels. Sweden: Swerea KIMAB
Go to article

Authors and Affiliations

Przemysław Marynowski
1
ORCID: ORCID
Marcin Hojny
1
Tomasz Dębiński
1
ORCID: ORCID

  1. AGH University of Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a study to determine the influence of casting parameters (cooling rate in the casting mould, casting temperature) on the primary structure of Mg-4%Li-1%Ca alloy ingots. The macro- and microstructure analysis of the Mg-4%Li-1%Ca alloy was performed using light and electron microscopy techniques. Microhardness measurements were made for the Mg-4%Li-1%Ca alloy and phase identification in the Mg-4%Li-1%Ca alloy was made using X-ray phase analysis.
Go to article

Bibliography

[1] Białobrzeski, A.& Saja, K. (2011). Experimental stand for melting and casting of ultralight Mg-Li alloys. Archives of Foundry Engineering. 11(3), 17-20.
[2] Bednarczyk, I., Kuc, D. & Mikuszewski, T.(2016). Microstructure and properties of Mg-Li-Re magnesium alloys.Hutnik-WH, 83(8), 321-323. (in Polish).
[3] Bin J. Heng-mei, Y. Rui-hong, L. & Liang, G. (2010). Grain refinement and plastic formability of Mg-14Li-1Al alloy.Transactions of Nonferrous Metals Society of China. 1, 503-507. DOI: 10.1016/s1003-6326(10)60527-4.
[4] Liu, X., Zhan, H., Gu, S., Qu, Z., Wu, R. & Zhang, M. (2011).Superplasticity in a two-phase Mg– 8Li–2Zn alloy processed by two-pass extrusion. Materials Science and Engineering A. 528(19-20), 6157-6162. https://doi.org/10.1016/j.msea.2011.04.073.
[5] Białobrzeski, A., Lech-Grega, M.& Żelechowski, J. (2010). Research on the structure of alloys based on magnesium and lithium with a two-phase α-β and single-phase ß structure.Prace Instytutu Odlewnictwa. L, 17-28. (in Polish).
[6] Zhou, Y., Bian, L., Chen, G. Wang, L. & Liang, W. (2015). Influence of Ca addition on microstructular evolution and mechanical properties of near-eutectic Mg-Li alloys by copper-mold suction casting. Journal of Alloys and Compounds. 664. 85-91. DOI:10.1016/j.jallcom.2015.12.198.
[7] Białobrzeski, A., Saja, K. & Hubner, K. (2007) Ultralightmagnesium-lithiumalloys. Archives of Foundry Engineering. 7(3), 11-16. ISSN(1897-3310).
[8] Jiang, B., Qiu, D., Zhang, M., Ding, P.& Gao, L. (2010). A new approach to grain refinement of an Mg-Li-Al cast alloy. Journal of Alloys and Compounds. 10(1-2), 96-98. DOI:10.1016/j.jallcom.2009.11.066.
[9] Grobner, J., Schmid-Fetzer, R., Pisch, A., Colinet, C., Pavlyuk, V.V., Dmytriv, G.S., Kevorkov, D.G. & Bodak, O.I. (2002). Phase equilibria, calorimetric study and thermodynamic modeling of Mg-Li-Ca alloys. Thermochimica Acta. 389(1-2), 85-94. DOI:10.1016/S0040-6031(01)00842-5.
[10] Song, G.S. &Kral, M.V. (2005) Characterization of cast Mg-Li-Ca alloys. Materials Characterization. (54)4-5, 279-286. DOI: 10.1016/j.matchar.2004.12.001.
[11] Cui, L. Sun, L.R., Zheng, Y. &Li, S. (2018). In vitro degradation and biocompatibility of Mg-Li-Ca alloys – the influence of Li content. Science China Materials, 61(4), 607-618.
[12] Zeng, R.C. Qi, W.C. & Cui, H.Z. (2015). In vitro corrosion of as-extruded Mg-Ca alloys – the influence of Ca concentration. Corrosion Science. 96. 23-31. DOI:10.1016/j.corsci.2015.03.018.
[13] Chang, T., Wang, J., Chu, Ch., Lee, S (2006). Mechanical properties and microstructures of various Mg–Li alloys.Materials Letters.60(27), 3272-3276. DOI 10.1016/j.matlet.2006.03.052.
[14] Li, T., Wu, S.D. Li, S.X. &Li, P.J. (2007).Microstructure evolution of Mg–14% Li–1% Al. alloy during the process of equal channel angular pressing.Materials Science and Engineering A. 460-461, 499-503.DOI10.1016/j.msea.2007.01.108.
[15] Jiang, B., Qiu, D., Zhang, M., Ding, P., Gao, L. (2010). A new approach to grain refinement of an Mg-Li-Al cast alloy. Journal of Alloys and Compounds.492(1-2), 95-98. DOI: 10.1016/j.jallcom.2009.11.066.
[16] Cui, L., Sun, L., Zeng, R., Zheng, Y., Li, S. (2017). In vitro degradation and biocompatibility of, Mg-Li-Ca alloys – the influence of Li content. Science China Materials 7/08, 1-12, DOI: 10.1007/s40843-017-9071-y.
[17] Gierek, A., Mikuszewski, T. (1998). Shaping the primary structure of metals and alloys.Gliwice: Wydawnictwo Politechniki Śląskiej. (in Polish).
[18] Adamski, C., Piwowarczyk, T. (1999).Metallurgy and foundry of non-ferrous metals. Aluminum and magnesium alloys. Kraków: Skrypt AGH nr 1117.
Go to article

Authors and Affiliations

Iwona Bednarczyk
1
ORCID: ORCID

  1. Silesian University of Technology, Department of Materials Technology, 40-019 Katowice ul. Krasińskiego 8, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of metallographic and tribological tests on GX120MnCr13 cast steel that was previously subjected to heat treatment (including solution treatment from 1100°C and isothermal holding at 250, 400, and 600°C for 100 hours). The temperatures of the isothermal holding process were selected in order to reflect the possible working conditions of the cast elements that can be made of this cast steel. Wear tests were carried out under dry friction conditions using the ball-on-disc method using a ZrO2 ball as a counter-sample. The tests were carried out with a load of 5 N. The influence of the long-term isothermal holding process on the microstructure of the tested cast steel was analysed by light and scanning microscopy; however, abrasion marks were also examined using a confocal microscope. Based on the tests conducted, it was found that in the microstructures of the sample after solution treatment and samples that were held in isothermal condition at 250 and 400°C, the grain boundary areas were enriched in Mn and Cr compared to the areas inside the grains. Pearlite appeared in the sample that was heated (or held in isothermal holding) at 600°C; its share reached 41.6%. The presence of pearlite in the austenitic matrix increased the hardness to 351.4 HV 10. The hardness of the remaining tested samples was within a range of 221.8–229.1 HV 10. Increasing the hardness of the tested cast steel directly resulted in a reduction in the degree of wear as well as the volume, area, and width of the abrasion marks. A microscopic analysis of the wear marks showed that the dominant process of the abrasive wear of the tested friction pair was the detachment and displacement of the tested material through the indentation as a result of the cyclical impact of the counter-sample.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings – application. Kraków: FotoBit. (in Polish).
[2] Maratray, F. (1995). High carbon manganese austenitic steels. Paris: International Manganese Institute.
[3] Krawczyk, J., Matusiewicz, P., Frocisz, Ł., Augustyn-Nadzieja, J., Parzycha, S. (2018). The wear mechanism of mill beaters for coal grinding made-up from high manganese cast. In the 73 WFC, 23-27 September 2018. Kraków, Poland.
[4] Zambrano, O.A., Tressia, G. & Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 1-24. DOI: 10.1016/j.engfailanal.2020.104621.
[5] Wróbel, T., Bartocha, D., Jezierski, J.; Kalandyk, B., Sobula, S., Tęcza, G., Kostrzewa, K., Feliks, E. (2023). High-manganese alloy cast steel in applications for cast elements of railway infrastructure. In the Proceedings of XXIX International Scientific Conference of Polish, Czech and Slovak Foundrymen Współpraca / Spolupráca, 26-28 April 2023. Niepołomice, Poland.
[6] Machado, P.C., Pereira, J.I. & Sinatora, A. (2021). Subsurface microstructural dynamic recrystallization in multiscale abrasive wear. Wear. 486-487, 204111, 1-14. DOI: 10.1016/j.wear.2021.204111.
[7] Tressia, G., Penagos, J.J. & Sinatora, A. (2017). Effect of abrasive particle size on slurry abrasion resistance of austenitic and martensitic steels. Wear. 376-377, 63-69. DOI: 10.1016/j.wear.2017.01.073.
[8] Olawale, J.O., Ibitoye, S.A., Shittu, M.D. & Popoola, A.P.I. (2011). A study of premature failure of crusher jaws. Journal of Failure Analysis and Prevention. 11(6), 705-709. DOI: 10.1007/s11668-011-9511-7.
[9] Stradomski Z., Stachura S., Stradomski G. (2013). Fracture mechanisms in steel castings. Archives of Foundry Engineering. 13, 88-91. DOI: 10.2478/afe-2013-0066.
[10] Martin, M., Raposo, M., Prat, O., Giordana, M.F. & Malarria, J. (2017). Pearlite development in commercial Hadfield steel by means of isothermal reactions. Metallography, Microstructure, and Analysis. 6, 591-597.
[11] Martin, M., Raposo, M., Druker, A., Sobrero, C. & Malarria, J. (2016). Influence of pearlite formation on the ductility response of commercial Hadfield steel. Metallography, Microstructure, and Analysis. 5(6), 505-511. https://doi.org/10.1007/s13632-016-0316-7.
[12] Tęcza, G. & Sobula, S. (2014). Effect of heat treatment on change microstructure of cast high-manganese Hadfield steel with elevated chromium content. Archives of Foundry Engineering. 14, 67-70.
[13] Krawczyk, J., Bembenek, M. & Pawlik, J. (2021). The role of chemical composition of high-manganese cast steels on wear of excavating chain in railway shoulder bed ballast cleaning machine. Materials. 16, 1-16. DOI: 10.3390/ma14247794.
[14] Fedorko, G., Molnár, V., Pribulová, A., Futaš, P., Baricová, D. (2011). The influence of Ni and Cr-content on mechanical properties of Hadfield ́s steel. In the 20th Anniversary International Conference on Metallurgy and Materials – Metal, May 2011 (pp. 18-20). Brno, Czech Republic.
[15] Najafabadi, V., Amini, K. & Alamdarlo, M. (2014). Investigating the effect of titanium addition on the wear resistance of Hadfield steel. Metallurgical Research and Technology. 111(6), 375-382. DOI: 10.1051/metal/2014044.
[16] Tęcza, G. & Garbacz-Klempka, A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168. DOI: 10.1515/afe-2016-0103.
[17] Kalandyk, B., Tęcza, G., Zapała, R. & Sobula S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in Miller test. Archives of Foundry Engineering. 15, 35-38. DOI: 10.1515/afe-2015-0033.
[18] Shan, Q., Ge, R., Li Z., Zhou, Z., Jiang ,Y., Lee, Y.-S. & Wu, H. (2021). Wear properties of high-manganese steel strengthened with nano-sized V2C precipitates. Wear. 482-483, 203922, 1-10. DOI: 10.1016/j.wear.2021.203922.
[19] Ayadi, S. & Hadji, A. (2021). Effect of chemical composition and heat treatments on the microstructure and wear behavior of manganese steel. International Journal of Metalcasting. 15(2), 510-519. DOI: 10.1007/s40962-020-00479-2.
[20] Gürol, U. & Can Kurnaz, S. (2020). Effect of carbon and manganese content on the microstructure and mechanical properties of high manganese austenitic steel. Journal of Mining and Metallurgy Section B - Metallurgy. 56, 171-182. DOI: 10.2298/JMMB191111009G.
[21] Kalandyk, B., Zapała, R., Kasińska, J. & Madej, M. (2021) Evaluation of microstructure and tribological properties of GX120Mn13 and GX120MnCr18-2 cast steels. Archives of Foundry Engineering. 21(3), 67-76. DOI: 10.24425/afe.2021.138681.
[22] Atabaki, M.M., Lafaril, S. & Abdollah-Pour, H. (2012) Abrasive wear behavior of high chromium cast iron and Hadfield steel-A comparison. Journal of Iron and Steel Research, International. 19, 43-50. DOI: 10.1016/S1006-706X(12)60086-7.
[23] Gierek, A. (2005). Zużycie tribologiczne. Gliwice: Wyd. Politechniki Śląskiej.
[24] Kalandyk, B., Zapała, R., Madej, M., Kasińska, J. & Piotrowska, K. (2022). Influence of pre-hardened GX120Mn13 cast steel on the tribological properties under technically dry friction. Tribologia. 3, 17-24. DOI: 10.5604/01.3001.0016.1020.
[25] El-Fawkhry, M.K., Fathy, A.M., Eissa, M.M. & El-Faramway, H. (2014). Eliminating heat treatment of Hadfield steel in stress abrasion wear applications, International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569.
[26] Cybo, J., Jura, S. (1995). Functional description of isometric structures in quantitative metallography. Functional description of isometric structures in quantitative metallography. Gliwice: Wyd. Politechniki Śląskiej. (in Polish).
[27] Standard EN 10349: 2009. Cast steel castings - Castings made of manganese austenitic cast steel. (in Polish).
[28] Standards PN-EN ISO 6507-1: 2007. Metallic materials - Vickers hardness test.
[29] Standards ISO 20808: 2016. Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of friction and wear characteristics of monolithic ceramics by ball-on-disc method. [30] Mishra, S. & Dalai R. (2021). A comparative study on the different heat-treatment techniques applied to high manganese steel. Materials Today: Proceedings. 44(1), 2517-2520. DOI: 10.1016/j.matpr.2020.12.602.
[31] Kawalec, M. & Fraś, E. (2009). Effect of silicon on the structure and mechanical properties of high-vanadium cast iron. Archives of Foundry Engineering. 9(3), 231-234.
[32] Dziubek, M., Rutkowska-Gorczyca, M., Dudziński, W. & Grygier, D. (2022). Investigation into changes of microstructure and abrasive wear resistance occurring in high manganese steel X120Mn12 during isothermal annealing and re-austenitisation process. Materials. 15(7), 2622. DOI: 10.3390/ma15072622.
[33] El Fawkhry M. K. (2021). Modified Hadfield steel for castings of high and low gouging applications. International Journal of Metalcasting. 15(4), 613-624. DOI: 10.1007/s40962-020-00492-5.
[34] Lindroos, M., Apostol, M., Heino, V., Valtonen, K., Laukkanen, A., Holmberg, K. & Kuokkala, V.T. (2015). The deformation, strain hardening, and wear behavior of chromium-alloyed Hadfield steel in abrasive and impact conditions. Tribology Letters. 57, 1-11. DOI: 10.1007/s11249-015-0477-6.
[35] Luo, Q. & Zhu, J. (2022). Wear property and wear mechanisms of high-manganese austenitic Hadfield steel in dry reciprocal sliding. Lubricants. 10(3), 1-18. DOI: /10.3390/lubricants10030037.
Go to article

Authors and Affiliations

Barbara Kalandyk
1
ORCID: ORCID
Renata E. Zapała
1
ORCID: ORCID
Iwona Sulima
2
ORCID: ORCID
Piotr Furmańczyk
3
ORCID: ORCID
Justyna Kasińska
3
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Foundry Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  2. University of the National Education Commission Krakow, Institute of Technology, ul. Podchorążych 2, 32-084 Krakow, Poland
  3. Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the possibility of improving the scratch resistance of the AZ91 magnesium alloy by applying a WCCoCr coating using the Air Plasma Spraying (APS) method. The coating thickness ranged from 140 to 160 m. Microstructural studies of the AZ91 magnesium alloy were performed. The chemical composition of the WCCoCr powder was investigated. The quality of the bond at the substrate–coating interface was assessed and a microanalysis of the chemical composition of the coating was conducted. The scratch resistance of the AZ91 alloy and the WCCoCr coating was determined. The scratch resistance of the WCCoCr powder-based coating is much higher than the AZ91 alloy, as confirmed by scratch geometry measurements. The scratch width in the coating was almost three times smaller compared to the scratch in the substrate. Observations of the substrate–coating interface in the scratch area indicate no discontinuities. The absence of microcracks and delamination at the transition of the scratch from the substrate to the coating indicates good adhesion. On the basis of the study, it was found that there was great potential to use the WCCoCr powder coating to improve the abrasion resistance of castings made from the AZ91 alloy.
Go to article

Bibliography

[1] Wanhill, R.J.H. (2017). Carbon fibre polymer matrix structural composites. Aerospace Materials and Material Technologies. 1, 309-341. https://doi.org/10.1007/978-981-10-2134-3_14.
[2] Dziadoń, A. & Mola, R. (2013). Magnesium – directions of shaping mechanical properties. Obróbka plastyczna Metali. XXIV(4). (in Polish).
[3] Mordike, B.L. & Ebert, T. (2001). Magnesium: Properties – application – potential. Materials Science and Engineering. 302(1), 37-45. DOI: 10.1016/S0921-5093(00)01351-4.
[4] Wang, G.G. & Weiler, J.P. (2023). Recent developments in high pressure die-cast magnesium alloys for automotive and future applications. Journal of Magnesium and Alloys. 11(1), 78 87. DOI: doi.org/10.1016/j.jma.2022.10.001.
[5] Liu, B., Yang, J., Zhang, X., Yang, Q., Zhang, J., Li, X. (2022). Development and application of magnesium alloy parts for automotive OEMs: A review. Journal of Magnesium and Alloys. 11(1), 15-47. DOI: 10.1016/j.jma.2022.12.015.
[6] Janik, B. (2011). Application of magnesium alloys in aviation. Prace Instytutu Lotnictwa. 57(221), 102-108. (in Polish).
[7] Prasad, S.V.S., Prasad, S.B., Verma, K., Mishra, R.K., Kumar, V. & Singh, S. (2021). The role and significance of Magnesium in modern day research – A review. Journal of Magnesium and alloys. 10(1), 1-61. DOI: 10.1016/j.jma.2021.05.012.
[8] Blawert, C., Hort, N. & Kainer, K.U. (2004). Automotive applications of magnesium and its alloys. Transaction of the Indian Institute of Metals. 57(4), 397-408.
[9] Chen, H. & Alpas A.T. (2000). Sliding wear map for the magnesium alloy Mg-9Al-0.9Zn (AZ91). Wear. 246(1-2), 106-116. DOI: 10.1016/S0043-1648(00)00495-6.
[10] Walczak, M., Caban, J. & Pliżga, P. (2015). Tribological characteristic of magnesium alloys used in means of transport. TTS Technika Transportu Szynowego. 22(12), 1614-1617.
[11] Parco, M., Zhao, L., Zwick, J., Bobzin, K. & Lugscheider, E. (2007). Investigation of particle flattening behaviour and bonding mechanisms of APS sprayed coatings on magnesium alloys. Surface and Coating Technology. 201(14), 6290-6296. DOI: 10.1016/j.surfcoat.2006.11.034.
[12] Morelli, S., Rombol`a, G., Bolelli, G., Lopresti, M., Puddu, P, Boccaleri, E., Seralessandri, L., Palin, L., Testa, V., Milanesio, M. & Lusvarghi, L. (2022). Hard ultralight systems by thermal spray deposition of WC-CoCr onto AZ31 magnesium alloy. Surface and Coating Technology. 451, 129056 1-26. DOI.org/10.1016/j.surfcoat.2022.129056.
[13] Gray, J.E. & Luan, B. (2002). Protective coatings on magnesium and its alloys – a critical review. Journal of Allys and Compounds. 336(1-2), 88-113. DOI: 10.1016/S0925 8388(01)01899-0.
Go to article

Authors and Affiliations

Marek Mróz
1
ORCID: ORCID
Sylwia Olszewska
1
ORCID: ORCID
Patryk Rąb
1
ORCID: ORCID

  1. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main objective of the present study is enhanced of the sand moulding process through addressing the sand mould defects and failures, ultimately lead to improve production of the sand castings with well-defined of pattern profiles. The research aimed to reduce the cost and energy expenditure associated with the compaction time of the sand moulding process. Practical destructive tests were conducted to assess properties of the green sand moulds. Linear regression and multi-regression methods were employed to identify the key factors influencing the sand moulding process. The proposed experimental destructive tests and predicted regression methods facilitated measurement of the green sand properties and enabled evaluation of the effective moulding parameters, thereby enhancing the sand moulding process. Factorial design of experiments approach was employed to evaluate effect of parameters of water content and mixing time of the green sand compaction process on the mechanical properties of green sand mould namely the tensile strength, and compressive strength.
Go to article

Bibliography

[1] Abdulamer, D. & Kadauw, A. (2019). Development of mathematical relationships for calculating material-dependent flowability of green molding sand. Journal of Materials Engineering and Performance. 28(7), 3994-4001. DOI: https://doi.org/10.1007/s11665-019-04089-w.
[2] Shahria, S., Tariquzzaman, M., Rahman, H., Al Amin, M., & Rahman, A. (2017). Optimization of molding sand composition for casting Al alloy. International Journal of Mechanical Engineering and Applications. 5(3), 155-161. DOI:10.11648/j.ijmea.20170503.13.
[3] Patil, G. & Inamdar, K. (2014). Optimization of casting process parameters using taguchi method. International Journal of Engineering Development and Research. 2(2), 2506-2511.
[4] Kassie, A. & Assfaw, S. (2013). Minimization of casting defects. IOSR Journal of Engineering. 3(5), 31-38. DOI:10.9790/3021-03513138.
[5] Gadag, S. Sunni Rao, K. Srinivasan, M. et al. (1987). Effect of organic additives on the properties of green sand assessed from design of experiments. AFS Transactions. 42, 179-186.
[6] Karunaksr, D. & Datta, G. (2007). Controlling green sand mold properties using artificial neural networks and genetic algorithms- A comparison. Applied Caly Science. 37(1-2), 58-66. DOI:10.1016/j.clay.2006.11.005.
[7] Said, R. Kamal, M. Miswan, N. & Ng, S. (2018). Optimization of moulding composition for quality improvement of sand casting. Journal of Advanced Manufacturing Technology. 12(1(1), 301-310.
[8] Pulivarti, S. & Birru, A. (2018). Optimization of green sand mould system using Taguchi based grey relational analysis. China Foundry. 15, 152-159. DOI: 10.1007/s41230-018-7188-1.
[9] Abdulamer, D. (2023). Impact of the different moulding parameters on engineering properties of the green sand mould. Archives of Foundry. 23(2), 5-9. DOI: 10.24425/afe.2023.144288.
[10] Kumar, S. Satsangi, P. & Prajapati, D. (2011). Optimization of green sand casting process parameters of a foundry by using taguchi’s method. International Journal of Advanced Manufacturing Technology. 55(1-4), 23-34. DOI: 10.1007/s00170-010-3029-0.
[11] Murguía, P. Ángel, R. Villa González del Pino, E. Villa, Y. & Hernández del Sol, J. (2016). Quality improvement of a casting process using design of experiments. Prospectiva. 14(1), 47-53. DOI: 10.15665/rp.v14i1.648.
[12] Abdullah, A. Sulaiman, S. Baharudin, B. Arifin, M. & Vijayaram, T. (2012). Testing for green compression strength and permeability properties on the tailing sand samples gathered from ex tin mines in perak state, Malaysia. Advanced Materials Research. 445, 859-864. DOI: 10.4028/www.scientific.net/AMR.445.859.
[13] Abdulamer, D. (2021). Investigation of flowability of the green sand mould by remote control of portable flowability sensor. Archives of Materials Science and Engineering, 112(2), 70-76. DOI: 10.5604/01.3001.0015.6289.
[14] Bast, J., Simon, W. & Abdullah, E. (2010). Investigation of cogs defects reason in green sand moulds. Archives of Metallurgy and Materials. 55(3), 749-755. DOI: 10.24425/afe.2023.144288.
[15] Montgomery, D.C. (2001). Design and Analysis of Experiments. (5th ed.). John Wiley & Sons, Inc.
[16] Dhindaw, B.K., Chakraborty, M. (1974). Study and control of properties and behavior of different sand systems by application of statistical design of experiments In the 41st International Foundry Congress, (pp. 9-14). Belgique.
[17] Abdulamer, D. (2023). Utilizing of the statistical analysis for evaluation of the properties of green sand mould. Archives of Foundry Engineering. 23(3), 67-73, DOI: 10.24425/afe.2023.146664, 2023.
[18] Parappagoudar, M. Pratihar, D. & Datta, G. (2007). Linear and non-linear statistical modelling of green sand mould system. International Journal of Cast Metals Research. 20(1), 1-13. DOI: 10.1179/136404607X184952.
[19] Dietert, H. W. Brewster, F. S. & Graham, A. L. (1996). AFS Trans. 74, 101-111.
[20] Parappagoudar, M. Pratihar, D. & Datta G. (2005). Green sand mould system modelling through design of experiments. Indian Foundry Journal. 51(4), 40-51.

Go to article

Authors and Affiliations

Dheya Abdulamer
1
ORCID: ORCID

  1. University of Technology- Iraq
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an experimental Mg-Al-RE-type magnesium alloy, named AEZ951, is presented. The chemical composition of the investigated alloy was ca. 9 wt% Al, 5 wt% RE (rare earth elements), 0.7 wt% Zn and 3 wt% Mn. The experimental material was gravity cast into a cold steel mould. Microstructure analyses were carried out by light microscopy, along with X-ray phase analysis and scanning electron microscopy with an energy-dispersive X-ray spectrometer (SEM + EDX). Detailed investigations disclosed the presence of primary dendrites of an α(Mg) solid solution and Al11RE3, ɣ and Al10RE2Mn7 intermetallic compounds in the alloy microstructure. The volume fraction of the Al11RE3 phase and α+ɣ eutectic was also presented. The hardness, impact strength, tensile strength as well as the yield strength of the alloy were examined in tests at room temperature. The examined experimental Mg-Al-RE-type magnesium alloy exhibited higher mechanical properties than the commercial AZ91 alloy (cast in the same conditions).


Go to article

Bibliography

[1] Lee, S.G., Patel, G.R., Gokhale, A.M., Sareeranganathan, A. & Horstemeyer, M.F. (2006). Quantitative fractographic analysis of variability in the tensile ductility of high-pressure die-cast AE44 Mg-alloy. Materials Science Engineering A. 427(1-2), 255-262. DOI: 10.1016/j.msea.2006.04.108.
[2] Braszczyńska-Malik, K. & Malik, M.A. (2020). Impact strength of AE-type alloys high pressure die castings. Archives of Foundry Engineering. 20(3), 5-8. DOI:10.24425/afe.2020.133321.
[3] Yang, Q., Guan, K., Li, B., Lv S., Meng F., Sun W., Zhang Y., Liu, X. & Meng, J. (2017). Microstructural characterizations on Mn-containing intermetallic phases in a high-pressure die-casting Mg–4Al–4RE–0.3Mn alloy. Materials Characterization. 132, 381-387. https://doi.org/10.1016/j.matchar.2017.08.032.
[4] Yang, Q., Lv, SH., Meng, FZ., Guan, K., Li, B.-S., Zhang, X-H., Zhang, J.-Q., Liu X.-J. & Meng. J. (2019). Detailed structures and formation mechanisms of well-known Al10RE2Mn7 phase in die-cast Mg–4Al–4RE–0.3Mn Alloy. Acta Metallurgica Sinica (English Letters). 32, 178-186. https://doi.org/10.1007/s40195-018-0819-0.
[5] Braszczyńska-Malik, K.N. & Grzybowska, A. (2016). Influence of phase composition on microstructure and properties of Mg-5Al-0.4Mn-xRE (x = 0, 3 and 5 wt.%) alloys. Materials Characterization. 115, 14-22. https://doi.org/10.1016/j.matchar.2016.03.014
[6] Zhou, W., Li, Z., Li, D., Qin, M. & Zeng, X. (2022). Solidification microstructure evolution in LA42 Mg alloy under various cooling rates. Journal of Materials Science. 57, 11411-11429. https://doi.org/10.1007/s10853-022-07330-5
[7] Cai, H., Wang, Z., Liu, L., Li, Y., Xing, F. & Guo F. (2022). Formation sequence of compounds in AZ91-0.9Ce alloy and its role in fracture process. Advanced Engineering Materials. 24(7), 2101411. https://doi.org/10.1002/ adem.202101411.
[8] Braszczyńska-Malik, K.N. (2014). Some mechanical properties of experimental Mg-Al-Mn-RE alloy. Archives of Foundry Engineering. 14(1), 13-16. DOI: 10.2478/afe-2014-0003.
[9] Yang, Q., Guan, K., Li, B., Lv, S., Meng, F., Sun, W., Zhang, Y., Liu, X. & Meng, J. (2017). Microstructural characterizations on Mn-containing intermetallic phases in a high-pressure die-casting Mg–4Al–4RE–0.3Mn alloy. Materials Characterization. 132, 381-387. https://doi.org/10.1016/j.matchar.2017.08.032.
[10] Zhou, W., Li, Z., Li, D., Qin, M. & Zeng X. (2022). Solidification microstructure evolution in LA42 Mg alloy under various cooling rates. Journal of Materials Science. 57, 11411-11429. https://doi.org/10.1007/s10853-022-07330-5.
[11] Braszczyńska, K.N. (2003). Contribution of SiC particles to the formation of the structure of Mg-3 wt.% RE cast composites. Zeitschrift für Metallkunde. 94, 144-148. https://doi.org/10.3139/ijmr-2003-0028.
[12] Li, L., Li, D., Zeng, X., Luo, A.A., Hu, B., Sachdev, A. K., Gu, L. & Ding, W. (2020). Microstructural evolution of Mg-Al-RE alloy reinforced with alumina fibers. Journal of Magnesium Alloys. 8(3), 565-577. https://doi.org/10.1016/ j.jma.2019.07.012
[13] Braszczyńska-Malik, K. & Przełożyńska, E. (2017). The influence of Ti particles on microstructure and mechanical properties of Mg-5Al-5RE matrix alloy composite. Journal of Alloys and Compounds. 728, 600-606. https://doi.org/10.1016/j.jallcom.2017.08.177.
[14] Tang, B., Li, J., Wang, Y., Luo, H., Ye, J., Chen, X., Chen, X., Zheng, K. & Pan, F. (2022). Mechanical properties and microstructural characteristics of Ti/WE43 composites. Vacuum. 206, 111534. https://doi.org/10.1016/ j.vacuum.2022.111534
[15] Powder Diffraction File, PDF-4+, International Centre for Diffraction Data (ICDD), Pennsylvania, USA, 2014.
Go to article

Authors and Affiliations

Katarzyna Braszczyńska-Malik
1
ORCID: ORCID

  1. Czestochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cast martensitic alloy steel is used for the production of parts and components of machines operating under conditions of abrasive wear. One of the most popular grades is cast steel GX70CrMnSiNiMo2 steel, which is used in many industries, but primarily in the mining and material processing sectors for rings and balls operating in the grinding sets of coal mills. To improve the abrasion resistance of cast alloy tool steel, primary titanium carbides were produced in the metallurgical process by increasing the carbon content to 1.78 wt.% and adding 5.00 wt.% of titanium to test castings. After alloy solidification, the result was the formation of a microstructure consisting of a martensitic matrix with areas of residual austenite and primary titanium carbides evenly distributed in this matrix.
The measured as-cast hardness of the samples was 660HV and it increased to as much as 800HV after heat treatment.
The abrasion resistance of the sample hardened in a 15% polymer solution increased at least three times compared to the reference sample after quenching and tempering.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings-applications. Kraków: Fotobit. (in Polish).
[2] Dobrzański, L.A. (2006). Engineering materials and material design. Warszawa: WNT. (in Polish).
[3] Metals Handbook, (1990). 10-th Ed., vol. 1. ASM International.
[4] Głownia, J., Tęcza, G., Sobula, S., Kalandyk, B., Dzieja, A. (2007). Determination of the content and effect of residual austenite on the properties of cast L70H2GNM steel. Research done for Metalodlew S.A., unpublished. (in Polish).
[5] Głownia, J. (2017). Metallurgy and technology of steel castings. Sharjah: Bentham Science Publishers, cop.
[6] Mirzaee, M., Momeni, A., Keshmiri, H. & Razavinejad, R. (2014). Effect of titanium and niobium on modifying the microstructure of cast K100 tool steel. Metallurgical and Materials Transactions B. 45, 2304-2314. https://doi.org/10.1007/s11663-014-0150-8.
[7] Grabnar, K., Burja, J., Balaško, T., Nagode, A. & Medved, J. (2022). The influence of Nb, Ta and Ti modification on hot-work tool-steel grain growth during austenitization. Materiali in tehnologije. 56(3), 331-338. https://doi.org/10.17222/mit.2022.486.
[8] Srivastava, A.K. & Das, K. (2009). Microstructural and Mechanical Characterization of in Situ TiC and (Ti,W)C-Reinforced High Manganese Austenitic Steel Matrix Composites. Materials Science & Engineering A. 516, 1–6.
[9] Das, K., Bandyopadhyay, T.K. & Das, S. (2002). A review on the various synthesis routes of TiC reinforced ferrous based composites. Jurnal of Materials Science. 516(1-2), 1-6. https://doi.org/10.1016/j.msea.2009.04.041.
[10] Olejnik, E., Janas, A., Kolbus, A. & Sikora, G. (2011). The composition of reaction substrates for TiC carbides synthesis and its influence on the thickness of iron casting composite layer. Archives of Foundry Engineering. 11(spec.2), 165-168. ISSN (1897-3310).
[11] Olejnik, E., Tokarski, T., Sikora, G., Sobula, S., Maziarz, W., Szymański, Ł. & Grabowska, B. (2019). The effect of Fe addition on fragmentation phenomena, macrostructure, microstructure, and hardness of TiC-Fe local reinforcements fabricated in situ in steel casting. Metallurgical and Materials Transactions A. 50, 975-986. https://doi.org/10.1007/s11661-018-4992-6.
[12] Sobula, S., Olejnik, E. & Tokarski, T. (2017). Wear resistance of TiC reinforced cast steel matrix composite. Archives of foundry engineering. 17(1), 143-146. DOI: 10.1515/afe-2017-0026.
[13] Montealegre, M., Castro, G., Arias, J., Fernández-Vicente, A., Vázquez, J. (2008). Tool steel laser surface modification with TiC. In 3rd Pacific International Conference on Application of Lasers and Optics 2008, (pp. 890-894). Torneiros, Spain.
[14] Balanou, M., Karmiris-Obratański, P.P., Emmanouil-Lazaros., G.N., Markopoulos, A. (2021). Surface modification of tool steel by using EDM green powder metallurgy electrodes. In IOP Conference Series Materials Science and Engineering, 14-15 December 2021 (pp. 012014). Athens, Greece.
[15] Szymański, Ł., Olejnik, E., Tokarski, T., Kurtyka, P., Drożyński, D. & Żymankowska-Kumon, S. (2018). Reactive casting coatings for obtaining in situ composite layers based on Fe alloys. Surface and Coatings Technology. 350, 346-358. https://doi.org/10.1016/j.surfcoat.2018.06.085.
[16] Szymański, Ł., Olejnik, E., Sobczak, J.J., Szala, M., Kurtyka, P., Tokarski, T. & Janas, A. (2022). Dry sliding, slurry abrasion and cavitation erosion of composite layers reinforced by TiC fabricated in situ in cast steel and gray cast iron. Journal of Materials Processing Technology. 308, 117688. https://doi.org/10.1016/j.jmatprotec.2022.117688.
[17] Valdes, V.H., Guerra, F.V., Bedolla Jacuinde, A. & Pacheco-Cedeño, J. (2023). Development and characterization of a cast steel reinforced with primary carbides for high strength and severe wear applications. MRS Advances. 8, 1139-1143. DOI: 10.1557/s43580-023-00699-8.
[18] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122. DOI: 10.24425/118823.
[19] Tęcza, G. & Garbacz-Klempka A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168. ISSN (1897-3310).
[20] Tęcza, G. (2021). Changes in abrasive wear resistance during Miller test of Cr-Ni cast steel with Ti carbides formed in the alloy matrix. Archives of Foundry Engineering. 21(4), 110-115. DOI: 10.24425/afe.2021.139758.,
[21] Kalandyk, B. & Zapała, R. (2013). Effect of high-manganese cast steel strain hardening on the abrasion wear resistance in a mixture of SiC and water. Archives of Foundry Engineering. 13(4), 63-66. ISSN (1897-3310).
[22] Kasinska, J. & Kalandyk, B.(2017). Effects of rare earth metal addition on wear resistance of chromium-molybdenum cast steel. Archives of Foundry Engineering. 17(3), 63-68. DOI: 10.1515/afe-2017-0092.
[23] Sobula, S. & Kraiński, S. (2021). Effect of SiZr modification on the microstructure and properties of high manganese cast steel. Archives of Foundry Engineering. 21(4), 82-86. Doi: 10.24425/afe.2021.138683.
Go to article

Authors and Affiliations

Grzegorz Tęcza
1
ORCID: ORCID

  1. AGH University of Krakow, Poland

Instructions for authors

Submission


To submit the article, please use the Editorial System provided here:

https://www.editorialsystem.com/afe


Papers submitted in any other way will not be accepted.



The Journal does not have submission charges.


The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.


Bank account details:


Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748


Instructions for the preparation of an Archives of Foundry Engineering Paper

Publication Ethics Policy


Publication Ethics Policy

The standards of expected ethical behavior for all parties involved in publishing in the Archives of Foundry Engineering journal: the author, the journal editor and editorial board, the peer reviewers and the publisher are listed below.

All the articles submitted for publication in Archives of Foundry Engineering are peer reviewed for authenticity, ethical issues and usefulness as per Review Procedure document.

Duties of Editors
1. Monitoring the ethical standards: Editorial Board monitors the ethical standards of the submitted manuscripts and takes all possible measures against any publication malpractices.
2. Fair play: Submitted manuscripts are evaluated for their scientific content without regard to race, gender, sexual orientation, religious beliefs, citizenship, political ideology or any other issues that is a personal or human right.
3. Publication decisions: The Editor in Chief is responsible for deciding which of the submitted articles should or should not be published. The decision to accept or reject the article is based on its importance, originality, clarity, and its relevance to the scope of the journal and is made after the review process.
4. Confidentiality: The Editor in Chief and the members of the Editorial Board t ensure that all materials submitted to the journal remain confidential during the review process. They must not disclose any information about a submitted manuscript to anyone other than the parties involved in the publishing process i.e., authors, reviewers, potential reviewers, other editorial advisers, and the publisher.
5. Disclosure and conflict of interest: Unpublished materials disclosed in the submitted manuscript must not be used by the Editor and the Editorial Board in their own research without written consent of authors. Editors always precludes business needs from compromising intellectual and ethical standards.
6. Maintain the integrity of the academic record: The editors will guard the integrity of the published academic record by issuing corrections and retractions when needed and pursuing suspected or alleged research and publication misconduct. Plagiarism and fraudulent data is not acceptable. Editorial Board always be willing to publish corrections, clarifications, retractions and apologies when needed.

Retractions of the articles: the Editor in Chief will consider retracting a publication if:
- there are clear evidences that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation or experimental error)
- the findings have previously been published elsewhere without proper cross-referencing, permission or justification (cases of redundant publication)
- it constitutes plagiarism or reports unethical research.
Notice of the retraction will be linked to the retracted article (by including the title and authors in the retraction heading), clearly identifies the retracted article and state who is retracting the article. Retraction notices should always mention the reason(s) for retraction to distinguish honest error from misconduct.
Retracted articles will not be removed from printed copies of the journal nor from electronic archives but their retracted status will be indicated as clearly as possible.

Duties of Authors
1. Reporting standards: Authors of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. The paper should contain sufficient details and references to permit others to replicate the work. The fabrication of results and making of fraudulent or inaccurate statements constitute unethical behavior and will cause rejection or retraction of a manuscript or a published article.
2. Originality and plagiarism: Authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others they need to be cited or quoted. Plagiarism and fraudulent data is not acceptable.
3. Data access retention: Authors may be asked to provide the raw data for editorial review, should be prepared to provide public access to such data, and should be prepared to retain such data for a reasonable time after publication of their paper.
4. Multiple or concurrent publication: Authors should not in general publish a manuscript describing essentially the same research in more than one journal. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable.
5. Authorship of the manuscript: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the report study. All those who have made contributions should be listed as co-authors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included in the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.
6. Acknowledgement of sources: The proper acknowledgment of the work of others must always be given. The authors should cite publications that have been influential in determining the scope of the reported work.
7. Fundamental errors in published works: When the author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Duties of Reviewers
1. Contribution to editorial decisions: Peer reviews assist the editor in making editorial decisions and may also help authors to improve their manuscript.
2. Promptness: Any selected reviewer who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should notify the editor and excuse himself/herself from the review process.
3. Confidentiality: All manuscript received for review must be treated as confidential documents. They must not be shown to or discussed with others except those authorized by the editor.
4. Standards of objectivity: Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should express their views clearly with appropriate supporting arguments.
5. Acknowledgement of sources: Reviewers should identify the relevant published work that has not been cited by authors. Any substantial similarity or overlap between the manuscript under consideration and any other published paper should be reported to the editor.
6. Disclosure and conflict of Interest: Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relations with any of the authors, companies, or institutions involved in writing a paper.

Peer-review Procedure


Review Procedure


The Review Procedure for articles submitted to the Archives of Foundry Engineering agrees with the recommendations of the Ministry of Science and Higher Education published in a booklet: ‘Dobre praktyki w procedurach recenzyjnych w nauce’ (MNiSW, Dobre praktyki w procedurach recenzyjnych w nauce, Warszawa 2011).

Papers submitted to the Editorial System are primarily screened by editors with respect to scope, formal issues and used template. Texts with obvious errors (formatting other than requested, missing references, evidently low scientific quality) will be rejected at this stage or will be sent for the adjustments.

Once verified each article is checked by the anti-plagiarism system Cross Check powered by iThenticate®. After the positive response, the article is moved into: Initially verified manuscripts. When the similarity level is too high, the article will be rejected. There is no strict rule (i.e., percentage of the similarity), and it is always subject to the Editor’s decision.
Initially verified manuscripts are then sent to at least four independent referees outside the author’s institution and at least two of them outside of Poland, who:

have no conflict of interests with the author,
are not in professional relationships with the author,
are competent in a given discipline and have at least a doctorate degree and respective
scientific achievements,
have a good reputation as reviewers.


The review form is available online at the Journal’s Editorial System and contains the following sections:

1. Article number and title in the Editorial System

2. The statement of the Reviewer (to choose the right options):

I declare that I have not guessed the identity of the Author. I declare that I have guessed the identity of the Author, but there is no conflict of interest

3. Detailed evaluation of the manuscript against other researches published to this point:

Do you think that the paper title corresponds with its contents?
Yes No
Do you think that the abstract expresses the paper contents well?
Yes No
Are the results or methods presented in the paper novel?
Yes No
Do the author(s) state clearly what they have achieved?
Yes No
Do you find the terminology employed proper?
Yes No
Do you find the bibliography representative and up-to-date?
Yes No
Do you find all necessary illustrations and tables?
Yes No
Do you think that the paper will be of interest to the journal readers?
Yes No

4. Reviewer conclusion

Accept without changes
Accept after changes suggested by reviewer.
Rate manuscript once again after major changes and another review
Reject


5. Information for Editors (not visible for authors).

6. Information for Authors


Reviewing is carried out in the double blind process (authors and reviewers do not know each other’s names).

The appointed reviewers obtain summary of the text and it is his/her decision upon accepting/rejecting the paper for review within a given time period 21 days.

The reviewers are obliged to keep opinions about the paper confidential and to not use knowledge about it before publication.

The reviewers send their review to the Archives of Foundry Engineering by Editorial System. The review is archived in the system.

Editors do not accept reviews, which do not conform to merit and formal rules of scientific reviewing like short positive or negative remarks not supported by a close scrutiny or definitely critical reviews with positive final conclusion. The reviewer’s remarks are sent to the author. He/she has to consider all remarks and revise the text accordingly.

The author of the text has the right to comment on the conclusions in case he/she does not agree with them. He/she can request the article withdrawal at any step of the article processing.

The Editor-in-Chief (supported by members of the Editorial Board) decides on publication based on remarks and conclusions presented by the reviewers, author’s comments and the final version of the manuscript.

The final Editor’s decision can be as follows:
Accept without changes
Reject


The rules for acceptance or rejection of the paper and the review form are available on the Web page of the AFE publisher.

Once a year Editorial Office publishes present list of cooperating reviewers.
Reviewing is free of charge.
All articles, including those rejected and withdrawn, are archived in the Editorial System.

Reviewers

List of Reviewers 2022

Shailee Acharya - S. V. I. T Vasad, India
Vivek Ayar - Birla Vishvakarma Mahavidyalaya Vallabh Vidyanagar, India
Mohammad Azadi - Semnan University, Iran
Azwinur Azwinur - Politeknik Negeri Lhokseumawe, Indonesia
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Iwona Bednarczyk - Silesian University of Technology, Gliwice, Poland
Artur Bobrowski - AGH University of Science and Technology, Kraków
Poland Łukasz Bohdal - Koszalin University of Technology, Koszalin Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Joanna Borowiecka-Jamrozek- The Kielce University of Technology, Poland
Debashish Bose - Metso Outotec India Private Limited, Vadodara, India
Andriy Burbelko - AGH University of Science and Technology, Kraków
Poland Ganesh Chate - KLS Gogte Institute of Technology, India
Murat Çolak - Bayburt University, Turkey
Adam Cwudziński - Politechnika Częstochowska, Częstochowa, Poland
Derya Dispinar- Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Gdynia, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Flora Faleschini - University of Padova, Italy
Imre Felde - Obuda University, Hungary
Róbert Findorák - Technical University of Košice, Slovak Republic
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Marek Góral - Rzeszow University of Technology, Poland
Barbara Grzegorczyk - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Ozen Gursoy - University of Padova, Italy
Gábor Gyarmati - University of Miskolc, Hungary
Jakub Hajkowski - Poznan University of Technology, Poland
Marek Hawryluk - Wroclaw University of Science and Technology, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Dario Iljkić - University of Rijeka, Croatia
Magdalena Jabłońska - Silesian University of Technology, Gliwice, Poland
Nalepa Jakub - Silesian University of Technology, Gliwice, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Aneta Jakubus - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Łukasz Jamrozowicz - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - AGH University of Science and Technology, Kraków, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Marcin Kondracki - Silesian University of Technology, Gliwice Poland
Vitaliy Korendiy - Lviv Polytechnic National University, Lviv, Ukraine
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Malgorzata Lagiewka - Politechnika Czestochowska, Częstochowa, Poland
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Jingkun Li - University of Science and Technology Beijing, China
Petr Lichy - Technical University Ostrava, Czech Republic
Y.C. Lin - Central South University, China
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Ewa Majchrzak - Silesian University of Technology, Gliwice, Poland
Barnali Maji - NIT-Durgapur: National Institute of Technology, Durgapur, India
Pawel Malinowski - AGH University of Science and Technology, Kraków, Poland
Marek Matejka - University of Zilina, Slovak Republic
Bohdan Mochnacki - Technical University of Occupational Safety Management, Katowice, Poland
Grzegorz Moskal - Silesian University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Silesian University of Technology, Gliwice, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Krzysztof Naplocha - Wrocław University of Science and Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Tomáš Obzina - VSB - Technical University of Ostrava, Czech Republic
Peiman Omranian Mohammadi - Shahid Bahonar University of Kerman, Iran
Zenon Opiekun - Politechnika Rzeszowska, Rzeszów, Poland
Onur Özbek - Duzce University, Turkey
Richard Pastirčák - University of Žilina, Slovak Republic
Miroslawa Pawlyta - Silesian University of Technology, Gliwice, Poland
Jacek Pezda - ATH Bielsko-Biała, Poland
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Jacek Pieprzyca - Silesian University of Technology, Gliwice, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Marcela Pokusová - Slovak Technical University in Bratislava, Slovak Republic
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich, West Midlands, United Kingdom
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University Thailand Amit Sata - MEFGI, Faculty of Engineering, India
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Vasudev Shinde - DKTE' s Textile and Engineering India Robert Sika - Politechnika Poznańska, Poznań, Poland
Bozo Smoljan - University North Croatia, Croatia
Leszek Sowa - Politechnika Częstochowska, Częstochowa, Poland
Sławomir Spadło - Kielce University of Technology, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Grzegorz Stradomski - Czestochowa University of Technology, Poland
Roland Suba - Schaeffler Skalica, spol. s r.o., Slovak Republic
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Jan Szajnar - Silesian University of Technology, Gliwice, Poland
Michal Szucki - TU Bergakademie Freiberg, Germany
Tomasz Szymczak - Lodz University of Technology, Poland
Damian Słota - Silesian University of Technology, Gliwice, Poland
Grzegorz Tęcza - AGH University of Science and Technology, Kraków, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Mirosław Tupaj - Rzeszow University of Technology, Poland
Robert B Tuttle - Western Michigan University United States Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Iveta Vaskova - Technical University of Kosice, Slovak Republic
Dorota Wilk-Kołodziejczyk - AGH University of Science and Technology, Kraków, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Çağlar Yüksel - Atatürk University, Turkey
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Jerzy Zych - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2021

Czesław Baron - Silesian University of Technology, Gliwice, Poland
Imam Basori - State University of Jakarta, Indonesia
Leszek Blacha - Silesian University of Technology, Gliwice
Poland Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Zilina, Slovak Republic
Marcin Brzeziński - AGH University of Science and Technology, Kraków, Poland
Andriy Burbelko - AGH University of Science and Technology, Kraków, Poland
Alexandros Charitos - TU Bergakademie Freiberg, Germany
Ganesh Chate - KLS Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Zhipei Chen - University of Technology, Netherlands
Józef Dańko - AGH University of Science and Technology, Kraków, Poland
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Maciej Dyzia - Silesian University of Technology, Poland
Eray Erzi - Istanbul University, Turkey
Przemysław Fima - Institute of Metallurgy and Materials Science PAN, Kraków, Poland
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Dipak Ghosh - Forace Polymers P Ltd., India
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Gábor Gyarmati - Foundry Institute, University of Miskolc, Hungary
Krzysztof Herbuś - Silesian University of Technology, Gliwice, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Agata Jażdżewska - Gdansk University of Technology, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Centre of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Adrian Kampa - Silesian University of Technology, Gliwice, Poland
Wojciech Kapturkiewicz- AGH University of Science and Technology, Kraków, Poland
Tatiana Karkoszka - Silesian University of Technology, Gliwice, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Himanshu Khandelwal - National Institute of Foundry & Forging Technology, Hatia, Ranchi, India
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Grzegorz Kokot - Silesian University of Technology, Gliwice, Poland
Ladislav Kolařík - CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Dariusz Kopyciński - AGH University of Science and Technology, Kraków, Poland
Janusz Kozana - AGH University of Science and Technology, Kraków, Poland
Tomasz Kozieł - AGH University of Science and Technology, Kraków, Poland
Aleksandra Kozłowska - Silesian University of Technology, Gliwice Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Wacław Kuś - Silesian University of Technology, Gliwice, Poland
Jacques Lacaze - University of Toulouse, France
Avinash Lakshmikanthan - Nitte Meenakshi Institute of Technology, India
Jaime Lazaro-Nebreda - Brunel Centre for Advanced Solidification Technology, Brunel University London, United Kingdom
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Maria Maj - AGH University of Science and Technology, Kraków, Poland
Jerzy Mendakiewicz - Silesian University of Technology, Gliwice, Poland
Hanna Myalska-Głowacka - Silesian University of Technology, Gliwice, Poland
Kostiantyn Mykhalenkov - Physics-Technological Institute of Metals and Alloys, National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Mitsuhiro Okayasu - Okayama University, Japan
Agung Pambudi - Sebelas Maret University in Indonesia, Indonesia
Richard Pastirčák - University of Žilina, Slovak Republic
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Seyda Polat - Kocaeli University, Turkey
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Alena Pribulova - Technical University of Košice, Slovak Republic
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich West Midlands, United Kingdom
Iulian Riposan - Politehnica University of Bucharest, Romania
Ferdynand Romankiewicz - Uniwersytet Zielonogórski, Zielona Góra, Poland
Mario Rosso - Politecnico di Torino, Italy
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University, Thailand
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Karthik Shankar - Amrita Vishwa Vidyapeetham , Amritapuri, India
Vasudev Shinde - Shivaji University, Kolhapur, Rajwada, Ichalkaranji, India
Robert Sika - Politechnika Poznańska, Poznań, Poland
Jerzy Sobczak - AGH University of Science and Technology, Kraków, Poland
Sebastian Sobula - AGH University of Science and Technology, Kraków, Poland
Marek Soiński - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Andrzej Studnicki - Silesian University of Technology, Gliwice, Poland
Mayur Sutaria - Charotar University of Science and Technology, CHARUSAT, Gujarat, India
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Sutiyoko Sutiyoko - Manufacturing Polytechnic of Ceper, Klaten, Indonesia
Tomasz Szymczak - Lodz University of Technology, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Jacek Trzaska - Silesian University of Technology, Gliwice, Poland
Robert B Tuttle - Western Michigan University, United States
Muhammet Uludag - Selcuk University, Turkey
Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Tomasz Wrobel - Silesian University of Technology, Gliwice, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Antonin Zadera - Brno University of Technology, Czech Republic
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Bo Zhang - Hunan University of Technology, China
Xiang Zhang - Wuhan University of Science and Technology, China
Eugeniusz Ziółkowski - AGH University of Science and Technology, Kraków, Poland
Sylwia Żymankowska-Kumon - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2020

Shailee Acharya - S. V. I. T Vasad, India
Mohammad Azadi - Semnan University, Iran
Rafał Babilas - Silesian University of Technology, Gliwice, Poland
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Emin Bayraktar - Supmeca/LISMMA-Paris, France
Jaroslav Beňo - VSB-Technical University of Ostrava, Czech Republic
Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Grzegorz Boczkal - AGH University of Science and Technology, Kraków, Poland
Wojciech Borek - Silesian University of Technology, Gliwice, Poland
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Žilina, Slovak Republic
John Campbell - University of Birmingham, United Kingdom
Ganesh Chate - Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Mirosław Cholewa - Silesian University of Technology, Gliwice, Poland
Khanh Dang - Hanoi University of Science and Technology, Viet Nam
Vladislav Deev - Wuhan Textile University, China
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Malwina Dojka - Silesian University of Technology, Gliwice, Poland
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Sergii Gerasin - Pryazovskyi State Technical University, Ukraine
Dipak Ghosh - Forace Polymers Ltd, India
Marcin Górny - AGH University of Science and Technology, Kraków, Poland
Marcin Gołąbczak - Lodz University of Technology, Poland
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Libor Hlavac - VSB Ostrava, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Philippe Jacquet - ECAM, Lyon, France
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Damian Janicki - Silesian University of Technology, Gliwice, Poland
Witold Janik - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - Akademia Górniczo-Hutnicza, Kraków, Poland
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Ladislav Kolařík -Institute of Engineering Technology CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Sergey Konovalov - Samara National Research University, Russia
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Janusz Krawczyk - AGH University of Science and Technology, Kraków, Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Agnieszka Kupiec-Sobczak - Cracow University of Technology, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Aleksander Lisiecki - Silesian University of Technology, Gliwice, Poland
Krzysztof Lukaszkowicz - Silesian University of Technology, Gliwice, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Katarzyna Major-Gabryś - AGH University of Science and Technology, Kraków, Poland
Pavlo Maruschak - Ternopil Ivan Pului National Technical University, Ukraine
Sanjay Mohan - Shri Mata Vaishno Devi University, India
Marek Mróz - Politechnika Rzeszowska, Rzeszów, Poland
Sebastian Mróz - Czestochowa University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Częstochowa, Poland
Konstantin Nikitin - Samara State Technical University, Russia
Daniel Pakuła - Silesian University of Technology, Gliwice, Poland


This page uses 'cookies'. Learn more